SINGULAR VARIATION OF DOMAINS AND EIGENVALUES OF THE LAPLACIAN

SHIN OZAWA

§1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n with C^{∞} boundary γ and w be a fixed point in Ω . For any sufficiently small $\epsilon > 0$, let B_{ϵ} be the ball defined by

$$B_{\epsilon} = \{ z \in \Omega; |z - w| < \epsilon \}.$$

Let Ω_{ϵ} be the bounded domain defined by $\Omega_{\epsilon} = \Omega \setminus \overline{B}_{\epsilon}$. Then the boundary of Ω_{ϵ} consists of γ and ∂B_{ϵ} . Let $0 > \mu_1(\epsilon) \ge \mu_2(\epsilon) \ge \ldots$ be the eigenvalues of the Laplacian in Ω_{ϵ} with the Dirichlet condition on $\gamma \cup \partial B_{\epsilon}$. And let $0 > \mu_1 \ge \mu_2 \ge \ldots$ be the eigenvalues of the Laplacian in Ω with the Dirichlet condition on γ . We arrange them repeatedly according to their multiplicities.

The main aim of this note is to give an asymptotic expression of $\mu_j(\epsilon)$ when ϵ tends to zero. We have the following two theorems.

THEOREM 1. Assume that n = 2. We fix j. Suppose that μ_j is simple, then the asymptotic relation

$$\mu_j(\epsilon) - \mu_j = 2\pi (\log \epsilon)^{-1} \varphi_j(w)^2 + 0((\log \epsilon)^{-2})$$
(1.1)

holds as ϵ tends to zero. Here ϕ_j denotes the normalized eigenfunction of the Laplacian associated with μ_i , that is, it satisfies

$$\int_{\Omega} \varphi_j(x)^2 \, dx = 1.$$

THEOREM 2. Assume that n = 3. We fix j. Suppose that μ_j is simple, then the asymptotic relation

$$\mu_j(\epsilon) - \mu_j = -4\pi\epsilon\varphi_j(w)^2 + O(\epsilon^{3/2})$$
(1.2)

holds as ϵ tends to zero. Here ϕ_j denotes the normalized eigenfunction of the Laplacian associated with μ_i .

The above two theorems are announced in Ozawa [2]. It should be remarked that the remainder terms in (1.1) and (1.2) may not be uniform with respect to *j*.

In §2, we show that $\lim_{\epsilon \to 0} \mu_j(\epsilon) = \mu_j$ for any j which is a consequence of a result in Rauch-Taylor [4]. In §3, we review the elegant variational formula

Received August 25, 1980. Revision received July 7, 1981.