CR EXTENDABILITY NEAR A POINT WHERE THE FIRST LEVIFORM VANISHES

AL BOGGESS

1. Introduction. Let M be a smooth generic 2n-d real dimensional submanifold of \mathbb{C}^n . Let T(M) be the real tangent bundle of M and $T^{\mathbb{C}}(M)$ be its complexification. Let $H(M) \subset T(M)$ be the holomorphic tangent bundle of M and $Y(M) \subset T(M)$ be the totally real subbundle of T(M) ($T(M) = H(M) \oplus Y(M)$). The fiber $H_p(M)$ is the largest J-invariant subspace of $T_p(M)$ (J:= the complex structure map on \mathbb{R}^{2n}). If $N_p(M)$ is the orthogonal compliment of $T_p(M)$ in \mathbb{R}^{2n} then $J: Y_p(M) \to N_p(M)$ is an isometry. M is generic means that $\dim_{\mathbb{R}} H_p(M) = 2n - 2d$ (minimal) and $\dim_{\mathbb{R}} Y_p(M) = d$ (maximal) for each $p \in M$.

We let $H^{c}(M) = H^{1,0}(M) \oplus H^{0,1}(M)$ be the complexification of H(M). The first leviform $\mathcal{L}_{p}^{1}: H_{p}^{1,0}(M) \to N_{p}(M)$ is defined by

$$\mathcal{L}_{p}^{1}(X_{p}) = \frac{1}{2i} J\left\{\pi_{p}^{1}\left[X, \overline{X}\right]_{p}\right\}$$

where $\pi_p^1: T_p^{\mathbb{C}}(M) \to T_p^{\mathbb{C}}(M)/H_p^{\mathbb{C}}(M)$ is the projection map and $X \in H^{1,0}(M)$ is any smooth vectorfield extension of X_p .

If M is a real hypersurface, then up to a scalar factor \mathcal{E}_p^1 can be identified with the restriction to $H_p^{1,0}(M)$ of the complex hessian matrix of a local defining function for M. In this case, Hans Lewy first showed that if \mathcal{E}_p^1 has eigenvalues of opposite sign (equivalently, the image of \mathcal{E}_p^1 is all of $N_p(M) \simeq \mathbb{R}$) then M is locally CR extendible near p, i.e., each continuous CR function (a solution to the homogeneous tangential Cauchy Riemann equations) near p extends to a holomorphic function defined on an open neighborhood of p in \mathbb{C}^n ; and furthermore, the set to which the CR function is extended as a holomorphic function depends only on the subset of M on which the CR function is defined.

In [BP], the above theorem of Hans Lewy was generalized to submanifolds of \mathbb{C}^n with higher codimension. There it was shown that if $\Gamma_p :=$ the convex hull of the image of \mathbb{C}^1_p is all of $N_p(M)$, then M is locally CR extendible near p. Note that if M is a real hypersurface, then the image of \mathbb{C}^1_p is either a point $(\mathbb{C}^1_p \equiv 0)$ or a ray (one nonzero eigenvalue) or all of $N_p(M) \simeq \mathbb{R}$ (eigenvalues of opposite sign). Thus, in this case the image of \mathbb{C}^1_p is always convex.

As far as the author knows, very little is known about CR extendability near a

Received April 24, 1981. Research supported in part by the Michigan Society of Fellows and in part by NSF Grant.