UNSTABLE ORBITAL INTEGRALS ON SL(3)

ROBERT E. KOTTWITZ

Introduction. Let G be a connected reductive group over a global field F. In [4] Langlands associates to G a family of connected reductive groups H over F and suggests how to use these groups H in the study of harmonic analysis on $G(F) \setminus G(A_F)$. (The global suggestions are in R. Langlands, Les débuts d'une formule des traces stables, Lectures at ENSJF, in preparation.) Langlands also introduces the groups H for a connected reductive group G over a local field F and suggests how to use them in the study of harmonic analysis on G(F). This theory has been worked out in two cases:

(1) G = SL(2) (and certain related groups), F local or global (see [3]),

(2) G arbitrary, F real or complex (see [6, 7, 8, 9]).

One aspect of Shelstad's theory for real groups is the matching of functions f on $G(\mathbf{R})$ and f' on $H(\mathbf{R})$ so that certain linear combinations of orbital integrals of f are equal to certain linear combinations of orbital integrals of f'. For this matching we need to assume that the embedding of L-groups ${}^{L}H \rightarrow {}^{L}G$ of Proposition 1 in [4] exists (this will be the case if the center of ${}^{L}G^{0}$ is connected), and in fact the precise form of the matching depends on the choice of embedding. Using the groups H to study harmonic analysis for groups over global fields will require the matching of functions by orbital integrals for non-archimedean local fields F as well, and if G, H are unramified (that is, quasi-split over F and split over an unramified extension of F), then the matching of spherical functions should be given by the homomorphism of Hecke algebras dual to ${}^{L}H \rightarrow {}^{L}G$. The purpose of this paper is to verify a precise form of the last statement for one particular case.

We take F to be a non-archimedean local field, L an unramified cubic extension of F, G = SL(3), $H = \ker(\operatorname{Res}_{L/F}G_m \xrightarrow{\operatorname{norm}} G_m)$. We have $H(F) = \{x \in L^{\times} : N_{L/F}x = 1\}$. Let W_F be the Weil group of F. The L-group LG of G is $W_F \times \operatorname{PGL}_3(\mathbb{C})$. The L-group LH of H is $W_F \ltimes S$ where S is the quotient of $\mathbb{C}^{\times} \times \mathbb{C}^{\times} \times \mathbb{C}^{\times}$ by \mathbb{C}^{\times} embedded diagonally. The group W_F acts on S through the quotient group $\operatorname{Gal}(L/F)$ by cyclic permutations of the three factors of \mathbb{C}^{\times} . There is an obvious embedding of S in PGL₃(C) obtained by mapping (z_1, z_2, z_3) into the diagonal matrix with entries z_1, z_2, z_3 , and this embedding can be extended to a unique embedding ${}^LH \to {}^LG$ such that the restriction of ${}^LH \to {}^LG$ to W_F is $w \mapsto w \times s_w$ where s_w is the identity matrix if w maps to the identity in

Received March 18, 1981. Partially supported by the National Science Foundation under Grant MCS78-02331.