UNSTABLE ORBITAL INTEGRALS ON SL(3)

ROBERT E. KOTTWITZ

Introduction. Let G be a connected reductive group over a global field F. In [4] Langlands associates to G a family of connected reductive groups H over F and suggests how to use these groups H in the study of harmonic analysis on $G(F) \backslash G\left(\mathrm{~A}_{F}\right)$. (The global suggestions are in R. Langlands, Les débuts d'une formule des traces stables, Lectures at ENSJF, in preparation.) Langlands also introduces the groups H for a connected reductive group G over a local field F and suggests how to use them in the study of harmonic analysis on $G(F)$. This theory has been worked out in two cases:
(1) $G=\operatorname{SL}(2)$ (and certain related groups), F local or global (see [3]),
(2) G arbitrary, F real or complex (see $[6,7,8,9]$).

One aspect of Shelstad's theory for real groups is the matching of functions f on $G(\mathrm{R})$ and f^{\prime} on $H(\mathrm{R})$ so that certain linear combinations of orbital integrals of f are equal to certain linear combinations of orbital integrals of f^{\prime}. For this matching we need to assume that the embedding of L-groups ${ }^{L} H \rightarrow{ }^{L} G$ of Proposition 1 in [4] exists (this will be the case if the center of ${ }^{L} G^{0}$ is connected), and in fact the precise form of the matching depends on the choice of embedding. Using the groups H to study harmonic analysis for groups over global fields will require the matching of functions by orbital integrals for non-archimedean local fields F as well, and if G, H are unramified (that is, quasi-split over F and split over an unramified extension of F), then the matching of spherical functions should be given by the homomorphism of Hecke algebras dual to ${ }^{L} H \rightarrow{ }^{L} G$. The purpose of this paper is to verify a precise form of the last statement for one particular case.

We take F to be a non-archimedean local field, L an unramified cubic extension of $F, G=\mathrm{SL}(3), H=\operatorname{ker}\left(\operatorname{Res}_{L / F} \mathrm{G}_{m} \xrightarrow{\text { norm }} \mathrm{G}_{m}\right)$. We have $H(F)=\{x \in$ $\left.L^{\times}: N_{L / F} x=1\right\}$. Let W_{F} be the Weil group of F. The L-group ${ }^{L} G$ of G is $W_{F} \times \mathrm{PGL}_{3}(\mathrm{C})$. The L-group ${ }^{L} H$ of H is $W_{F} \ltimes S$ where S is the quotient of $\mathrm{C}^{\times} \times \mathrm{C}^{\times} \times \mathrm{C}^{\times}$by C^{\times}embedded diagonally. The group W_{F} acts on S through the quotient group $\operatorname{Gal}(L / F)$ by cyclic permutations of the three factors of C^{\times}. There is an obvious embedding of S in $\mathrm{PGL}_{3}(\mathrm{C})$ obtained by mapping $\left(z_{1}, z_{2}, z_{3}\right)$ into the diagonal matrix with entries z_{1}, z_{2}, z_{3}, and this embedding can be extended to a unique embedding ${ }^{L} H \rightarrow{ }^{L} G$ such that the restriction of ${ }^{L} H \rightarrow{ }^{L} G$ to W_{F} is $w \mapsto w \times s_{w}$ where s_{w} is the identity matrix if w maps to the identity in

Received March 18, 1981. Partially supported by the National Science Foundation under Grant MCS78-02331.

