BIRATIONAL MORPHISMS OF SMOOTH THREEFOLDS COLLAPSING THREE SURFACES TO A POINT

BRUCE CRAUDER

This paper classifies proper birational morphisms of smooth threefolds collapsing three smooth surfaces meeting normally to a point. In addition to three blow-ups and Hironaka's example of the blow-up of two plane curves, one new nonprojective morphism, the wagon wheel, is found, which collapses two smooth surfaces meeting normally to a plane curve with one ordinary singular point. Neither of the surfaces is birationally equivalent to the blow-up of the singular point. Elementary modifications of threefolds are defined and used to describe both of the nonprojective morphisms. A number of formulae and facts related to birational morphisms of threefolds and their factorizations are also established.

TABLE OF CONTENTS

Introduction	n.		•		•	•		•													. 589
Section 1.	Basic	facts	s and	l fo	orm	nula	e														. 592
Section 2.	Quasi	-fact	oriza	atic	on					•											. 598
Section 3.	Kulik	ov's	class	sifi	cat	ion	of	eff	fect	tive	e ai	nti-	car	on	ica	l di	ivis	ors	5.	•	. 604
Section 4.																					
Section																					
Section																					
Section	4 c .	The	wag	on	wh	ieel				•	•	•	•				•	•		•	. 619
References				•			•						•				•		•		. 631

Introduction. The factorization question asks whether proper birational mappings between smooth algebraic spaces over C may be written as compositions of blow-ups and blow-downs with smooth centers. Hironaka's theorem on elimination of points of indeterminacy (Hironaka [5] and [6]) reduces that question to that of proper birational morphisms. If $f: X \to Y$ is a proper birational morphism, let S_f be the subvariety of Y where f^{-1} is not a morphism and let $E_f = f^{-1}(S_f)$. By Zariski's Main Theorem (Zariski [18] and van der Waerden [16]), E_f is a divisor and S_f has codimension at least two. Thus for curves, such morphisms are isomorphisms. For surfaces, such morphisms have

Received July 14, 1980. Revision received April 21, 1981.