CLOSED GEODESICS AND THE FUNDAMENTAL GROUP

W. BALLMANN, G. THORBERGSSON, W. ZILLER

In the present note we examine the existence of closed geodesics on a compact Riemannian manifold (M, g) with nontrivial fundamental group. Denote the conjugacy class of an element $a \in \pi_1(M)$ by [a]. We define $N_g(t)$ (resp. $N_g^a(t)$) to be the number of geometrically different closed geodesics of g of length $\leq t$ (resp. the number of those of length $\leq t$ in the free homotopy class defined by $[a^n]$, $n \in Z - \{0\}$). Here two closed geodesics are called geometrically different if their images are different.

THEOREM A. Suppose that a is a nontrivial element of $\pi_1(M)$ which satisfies $[a^n] = [a^m]$ for some integers $n \neq m$. Then in the space of C^k metrics, $k \geq 4$ (including $k = \infty$), endowed with the C^k topology, there exists a generic set \emptyset such that for any $g \in \emptyset$ there exists a constant c > 0 such that

$$N_g^a(t) \ge c \frac{t}{\ln t}$$

for t sufficiently large. In particular, there exist infinitely many closed geodesics on (M, g).

The hypothesis of the theorem is clearly satisfied if a is nontrivial and has finite order. Hence we get the following immediate corollary:

COROLLARY. Suppose that $\pi_1(M)$ is finite and nontrivial. Then for a generic metric g on M there exists a constant c > 0 such that

$$N_g(t) \ge c \frac{t}{\ln t}$$

for t sufficiently large.

Remark. The hypothesis of the theorem can also be satisfied if $\pi_1(M)$ has no torsion: If a, b are the generators of the fundamental group of the Klein bottle with the relation $bab^{-1} = a^{-1}$, then $[a] = [a^{-1}]$.

Proof of Theorem A. For each closed geodesic $c: R/Z \to M$ one has the linearized Poincaré map $P: E \oplus E \to E \oplus E$, where E is the orthogonal complement of $\dot{c}(0)$ in $M_{c(0)}$. P is given by $(x, y) \mapsto (J(1), \nabla J(1))$, where J is the Jacobi field determined by J(0) = x, $\nabla J(0) = y$. c is called hyperbolic if P has no eigenvalue on the unit circle.

Received March 5, 1981. This work was done under the program "Sonderforschungsbereich Theoretische Mathematik (SFB40)" at the University of Bonn.