EXISTENCE OF L^2 -INTEGRABLE HOLOMORPHIC FORMS AND LOWER ESTIMATES OF T_V^1

STEPHEN S.-T. YAU

§0. Introduction. Let (V,q) be normal isolated singularity of dimension $n \ge 2$. It is easy to see that holomorphic functions defined on $V - \{q\}$ can be extended across q. However for holomorphic forms, the situation is completely different. Even if we assume that the holomorphic form ω defined on $V - \{q\}$ is L^2 -integrable in a neighborhood of q in the sense of Griffiths ([4], [13]), it is not clear whether ω can be extended across q. In [13], the Griffiths number $g^{(p)}$ was introduced to measure how many L^2 -integrable holomorphic forms on $V - \{q\}$ cannot be extended across q. Similarly, let us denote the number of holomorphic p-forms on $V - \{q\}$ which cannot be extended across q by $\delta^{(p)}$. In case of hypersurface singularities, these invariants are computed (cf. Theorem 1.1). One can see among these numbers, $g^{(n)}$, $g^{(n-1)}$, $\delta^{(n)}$ and $\delta^{(n-1)}$ are the most interesting invariants. The following are our main theorems:

THEOREM A. Let $\pi: M \to V$ be any resolution of the singularity of V. Then

(a) For n = 2, $g^{(2)} \ge 1$ and $\delta^{(2)} \ge 1 + \dim H^1(M, \mathbb{O})$

(b) For $n \ge 3$, $g^{(n)} \ge n-1$ and $\delta^{(n)} \ge n-1 + \dim H^{n-1}(M, 0)$ if $\dim H^{n-1}(M, 0) > 0$.

THEOREM B. Suppose that (V,q) admits a C*-action. Then $g^{(n-1)} \ge g^{(n)}$ and $\delta^{(n-1)} \ge \delta^{(n)}$.

The invariant $\delta^{(n-1)}$ is of particular interest because in the case of Gorenstein surface singularity, $\delta^{(n-1)}$ is exactly equal to dim T_V^1 where T_V^1 is the set of isomorphism class of first order infinitesimal deformation of V. By Grauert [3], T_V^1 can be thought of as a Zariski tangent space of the moduli space of (V,q). An important application of Theorem A and Theorem B is the following corollary.

COROLLARY C. Let (V,q) be a Gorenstein surface singularity with C*-action. Then dim $T_V^1 \ge 1 + \dim H^1(M, \emptyset)$.

We should remark that it is a long standing conjecture that $\dim T_V^1 > 0$ for Gorenstein surface singularities. In case (V, q) admits a C*-action, our Corollary C is far better than the original conjecture. In fact in [14], we have already proved that $\dim T_V^1 > 0$ for Gorenstein surface singularities with C*-action. More recently J. Wahl has informed us that he has obtained $\dim T_V^1 > 0$ for two-dimensional normal singularities with C*-action. The detail of his proof will be available soon.

Received May 4, 1981. Partially supported by a Sloan Foundation Fellowship, N.S.F. Grant and Princeton University.