THE ARITHMETIC OF LUBIN-TATE DIVISION TOWERS

ROBERT F. COLEMAN

I. Introduction. In this paper we continue the study of Lubin-Tate division towers initiated in $[C_2]$. We will be principally concerned with the Iwasawa-Wiles homomorphism ψ from coherent sequences of units to coherent sequences of elements in the dual of the image of the Lubin-Tate logarithm. Our notation will be the same as in $[C_2]$.

Thus K is a local field of any characteristic, H a finite unramified extension of K, π a uniformizing parameter of K and \mathfrak{T} a Lubin-Tate formal group associated to π and K. Then H_n is the field obtained by adjoining the π^{n+1} division points \mathfrak{T}_n of \mathfrak{T} to H. First we will recall the definition of ψ . Recall (see [W] or [L]) that $(\ ,\)_n$ is a pairing

$$(,)_n: \mathfrak{T}(\mathfrak{p}_n) \times H_n^* \to \mathfrak{T}_n$$

where $\mathfrak{T}(\mathfrak{p}_n)$ is the group that \mathfrak{T} associates with \mathfrak{p}_n the maximal ideal in the maximal order of H_n . This pairing is defined as follows: Let $a \in \mathfrak{p}_n$, $b \in H_n^x$ and let $\alpha \in \Omega$ such that $[\pi^{n+1}](\alpha) = a$. (Ω is the completion of a fixed algebraic closure of K.) Then $H_n(\alpha)$ is an abelian extension of H_n and if we let σ_b denote the image of b in $\operatorname{Gal}(H_n(\alpha)/H_n)$ via the Artin map then

$$(a,b)_n = \sigma_b(\alpha)[-]\alpha$$

where [-] denotes subtraction in \mathfrak{T} . Now let λ be the logarithm of \mathfrak{T} , v a generator of $T_{\mathfrak{T}}$ the Tate module of \mathfrak{T} and $T_{n/K}$ the trace from H_n to K. Let

$$\mathfrak{X}_n = \{ \beta \in H_n : T_{n/K}(\lambda(\alpha)\beta) \in \emptyset \text{ for all } \alpha \in \mathfrak{p}_n \}$$

where \emptyset is the ring of integers of K. Let $X'_n = N_{2n+1,n}(H^x_{2n+1})$. Then Proposition 7 of [W] asserts that there exists a unique homomorphism

$$\psi_{v,n}: X'_n \to \mathfrak{X}_n / \pi^{n+1} \mathfrak{X}_n$$

such that

$$(a,b)_n = \left[T_{n/K}(\lambda(a),\psi_{v,n}(b)) \right](v_n)$$

for all a in Y_n and b in X'_n where v_n denotes the nth component of v. Moreover,

Received October 22, 1980. Revision received February 14, 1981.