THE CRITICAL VALUES OF ZETA FUNCTIONS ASSOCIATED TO THE SYMPLECTIC GROUP

JACOB STURM

§1. Introduction. The purpose of this paper is to establish a formula for the projection operator on the space of C^{∞} Siegel modular forms, and to apply it to the study of zeta functions of Rankin type.

Let F be a C^{∞} form of weight k (precise definitions will be provided in section 2). Then there is, associated to F, a unique holomorphic cusp form $P(F)$ of weight k, satisfying the following identity of Petersson inner products:

$$
\langle F, g\rangle=\langle P(F), g\rangle,
$$

for all holomorphic cusp forms g of weight k. In section 2 , we state a formula which relates the nth Fourier coefficient of $P(F)$ to the nth Fourier coefficient of F. The formula will be obtained in section 3 by integrating F against a certain (Bergmann-type) kernel, whose analytic properties have been studied by Godement [4].
Let $f(z)$ and $g(z)$ be holomorphic modular forms of weights k and l (on congruence subgroups of $\operatorname{Sp}(n, Z)$) with Fourier expansions

$$
f(z)=\sum_{s \in B} a(s) e(\sigma(s z)), \quad g(z)=\sum_{s \in B} b(s) e(\sigma(s z)) .
$$

Here B is the set of all positive definite n by n semi-integral matrices, z is a point on $\mathscr{\bigotimes}_{n}$, the Siegel upper half plane, and σ is the trace function. We define an equivalence relation on B by $s_{1} \sim s_{2}$ if and only if $s_{1}={ }^{t} u s_{2} u$ for some $u \in \operatorname{SL}(n, Z)$. Then we put, for $\xi \in \mathrm{C}$,

$$
D(\xi, f, g)=\sum_{b / \sim} a(s) \overline{b(s)} \operatorname{det}(s)^{-\xi}
$$

where B / \sim is the orbit space. This function has been studied by Shimura [8] in the one dimensional case, and by Adrianov and Kalinin [1,2,3], in the case in which $g=\theta$ is a certain theta series of weight $n / 2$. Our first result on the critical values of $D(\xi, f, g)$ is stated in section 6 , proposition 7. We define, for each fixed g of level N, a set of integers (or half integers) $\Omega(g)$, and we exhibit, for each $m \in \Omega(g)$, a holomorphic cusp form $K(m, g)$, of weight k, satsifying the following properties: For every $m \in \Omega(g)$, and every cusp form f of weight k and level N,

$$
\begin{aligned}
D(m, f, g) & =p\langle f, K(m, g)\rangle, \\
K(m, g)^{\sigma} & =K\left(m, g^{\sigma}\right) \quad \text { for all } \sigma \in \operatorname{Aut}(C),
\end{aligned}
$$

Received September 23, 1980. This work was partially supported by NSF Grant MCS77-07660.

