VON STAUDT FOR $\mathbf{F}_{o}[T]$

DAVID GOSS

Table of Contents

Introduction

1.	Background	
	1.1 Drinfeld modules of rank one	87
	1.2 Carlitz's module	
	1.3 Carlitz's construction	89
2.	Zeta functions	
	2.1 Dirichlet series	392
	2.2 The zeta function of $\mathbf{F}_q[T]$	
	2.3 The connection with $\log_L(z)$	
3.	Bernoulli-Carlitz numbers	
	3.1 Γ_m	395
	3.2 Hurwitz series	
	3.3 Preliminary theorems on B.C. numbers	
	3.4 The main lemma	
	3.5 The end of the proof	
4.	Complements	
	4.1 Examples	300
	4.2 Applications to general rank one modules	209
Bil	bliography	

Introduction

In 1935, Carlitz introduced and studied what is now called a rank one Drinfeld, or elliptic, module. His work, in [1], [2] and [3], is a very beautiful example of the general theory of Drinfeld modules, which was introduced by Drinfeld [5], in 1973. Carlitz's methods are very computational and should be widely applicable. Therefore, one reason for this paper is to collect the theorems in [1], [2] and [3] and to put them in a more modern setting.

The work of Carlitz in [2] and [3] is geared toward proving a von-Staudt type Theorem for the values of certain "zeta functions", (see 2). These "numbers" occur as the constant terms of the q-expansion of Eisenstein series of all ranks,