THE ATOMIC DECOMPOSITION FOR HARDY SPACES IN SEVERAL COMPLEX VARIABLES

JOHN B. GARNETT ROBERT H. LATTER

Section 1. Introduction.

Recently characterizations of the classical Hardy spaces have been given which have obvious extensions to very general contexts. These characterizations are in terms of maximal functions [1], [9] and in terms of the atomic decomposition [4], [6]. The purpose of this paper is to study the relationships between these spaces in the context of the unit ball B^n in complex n-space. In fact, we will show that the atomic Hardy spaces and the maximal function Hardy spaces are the same for 0 . In addition, we will show the usualHardy spaces \mathcal{H}^p of holomorphic functions in G^y are the spaces of "holomorphic parts" of functions in the atomic Hardy spaces. These results extend to 0 the corresponding results for <math>p = 1 due to Coifman, Rochberg and G. Weiss [5] and to L. Carleson [2], [3]. As a consequence of these results we obtain a characterization of the dual space of \mathcal{H}^p , and we derive an analogue of the factorization theorem of [5] for \mathcal{H}^p (0 < $p \le 1$).

Let us be more specific. We denote by $\mathcal{H}^p(B^n)$ (0 the space of functions F(z) which are holomorphic in the unit ball $B^n = \{z = (z_1, \dots, z_n) \in \mathbb{C}^n : z_n \in$ |z| > 1 and which satisfy

$$||F||_{\mathcal{H}^p}^p = \sup_{0 < r < 1} \int_{\Sigma} |F(rz)|^p d\sigma(z) < \infty,$$

where $\delta \sigma$ is surface area measure on $\Sigma = \Sigma_{2n-1} = \partial B^n$. By identifying $F \in \mathcal{H}^p$ with its boundary values we identify \mathcal{H}^z as a subspace of $L^p(\Sigma)$.

The space \mathcal{H}^2 is of special interest because it is a Hilbert space. Let $P: L^2 \to \mathcal{H}^2$ be the orthogonal projection. Then P has a representation in terms of the Cauchy-Szego integral as follows: If $F \in L^2(\Sigma)$, then

(1.1)
$$SF(rz) = c \int_{\Sigma} \frac{F(\zeta)}{(1 - rz \cdot \bar{\zeta})^n} d\sigma(\zeta)$$

and

Received April 7, 1978. This research was partly supported by grants from the National Science Foundation.