COMPLEX DIFFERENTIAL AND INTEGRAL GEOMETRY AND CURVATURE INTEGRALS ASSOCIATED TO SINGULARITIES OF COMPLEX ANALYTIC VARIETIES

PHILLIP A. GRIFFITHS

Table of Contents

Introduction
1. Hermann Weyl's formula for the volume of tubes and the Gauss-Bonnet
theorem
a) Frames and derivation of the formula 432
b) Tubes and the Gauss-Bonnet theorem
c) Gauss mapping and the Gauss-Bonnet theorem
Footnotes
2. Integral geometry for manifolds in \mathbb{R}^{N}
a) Crofton's formula in the plane 444
b) Application of Crofton's formula to total curvature
c) The kinematic formula
Footnotes
3. Hermitian differential geometry and volumes of tubes in the complex case
a) Frames and Chern forms for complex manifolds in \mathbb{C}^N
b) Remarks on integration over analytic varieties
c) Volume of tubes in the complex case
Footnotes
4. Hermitian integral geometry
a) The elementary version of Crofton's formula
b) Crofton's formula for Schubert cycles
c) The second Crofton formula 479
d) The third Crofton formula 485
Appendix to Sections 2 and 4: Some general observations on integral
geometry
Footnotes
5. Curvature and Plücker defects
a) Gauss-Bonnet and the Plücker paradox
b) The Plücker defect and Langevin's formula
c) Extension to higher codimension and isolation of the top
Milnor number
d) Further generalizations and open questions
Footnotes
Received May 26, 1978. These are the Gergen Memorial Lectures delivered March 26-30,

1978 at Duke University. Research partially supported by N.S.F. Grant MCS 77-07782