A SMOOTH CURVE IN \mathbf{R}^{4} BOUNDING A CONTINUUM OF AREA MINIMIZING SURFACES

BY FRANK MORGAN

1. Introduction.

We give an example of a smooth closed curve B in \mathbb{R}^4 bounding a continuum (homeomorphic to \mathbb{R}) of (unoriented) surfaces of least area. As is well known, any closed curve in \mathbb{R}^n bounds a surface of least area, and there are examples of curves in \mathbb{R}^3 bounding several area minimizing or minimal surfaces. (Nitsche [11, pp. 396–397] gives several references.) Fleming [7] gives an example (pictured by Almgren [3, p. 3]) of a rectifiable curve (necessarily not smooth) bounding uncountably many minimal surfaces. (See also Lévy [9, p. 29], Courant [5, pp. 119–122], Nitsche [11, pp. 396–398].) But our curve B seems to be the first example of a smooth curve in \mathbb{R}^n bounding infinitely many. Our method is to show that an area minimizing surface with boundary B cannot be invariant under a certain circle of isometries of \mathbb{R}^4 which leaves B invariant. Although the result can be proved by several area estimates, we employ a more elegant and general approach using regularity theory.

2. Definitions.

In general we use the terminology of Federer's treatise [6]. Identify $\mathbf{R}^2 \cong \mathbf{C}, \mathbf{R}^4 \cong \mathbf{C}^2$.

Let R be a positive number large enough to insure that $R^2 > 2\pi R + 1$. Define

$$f: \mathbf{C} \to \mathbf{C}^2, \quad f: z \mapsto (z, Rz^*);$$

$$\mathbf{S}^1 = \{ z \in C : |z| = 1 \}; \quad B = f(\mathbf{S}^1).$$

For $\alpha \in \mathbf{S}^1$, let

 $H_{\alpha} = \{(z, w) \in \mathbf{C}^2 : w \neq 0, w/|w| = \alpha\}.$

Then if $\beta^4 = \alpha$, $B \cap H_{\alpha} = \{(\beta, \alpha R), (i\beta, \alpha R), (-\beta, \alpha R), (-i\beta, \alpha R)\}$. Define a topological isomorphism

$$g: \mathbf{S}^{1} \to \Gamma \subset \mathbf{U}(2), \qquad g: u \mapsto g_{u}$$
$$g_{u}(z, w) = (uz, u^{4}w).$$

Clearly B is invariant under Γ .

Received September 9, 1976. The author gratefully acknowledges National Science Foundation graduate support. The author would like to thank Professor Frederick J. Almgren, Jr., for his kind help and counsel.