A SMOOTH CURVE IN R ${ }^{4}$ BOUNDING A CONTINUUM OF AREA MINIMIZING SURFACES

BY FRANK MORGAN

1. Introduction.

We give an example of a smooth closed curve B in \mathbf{R}^{4} bounding a continuum (homeomorphic to \mathbf{R}) of (unoriented) surfaces of least area. As is well known, any closed curve in \mathbf{R}^{n} bounds a surface of least area, and there are examples of curves in \mathbf{R}^{3} bounding several area minimizing or minimal surfaces. (Nitsche [11, pp. 396-397] gives several references.) Fleming [7] gives an example (pictured by Almgren [3, p. 3]) of a rectifiable curve (necessarily not smooth) bounding uncountably many minimal surfaces. (See also Lévy [9, p. 29], Courant [5, pp. 119-122], Nitsche [11, pp. 396-398].) But our curve B seems to be the first example of a smooth curve in \mathbf{R}^{n} bounding infinitely many. Our method is to show that an area minimizing surface with boundary B cannot be invariant under a certain circle of isometries of \mathbf{R}^{4} which leaves B invariant. Although the result can be proved by several area estimates, we employ a more elegant and general approach using regularity theory.

2. Definitions.

In general we use the terminology of Federer's treatise [6].
Identify $\mathbf{R}^{2} \cong \mathbf{C}, \mathbf{R}^{4} \cong \mathbf{C}^{2}$.
Let R be a positive number large enough to insure that $R^{2}>2 \pi R+1$. Define

$$
\begin{aligned}
f: \mathbf{C} & \rightarrow \mathbf{C}^{2}, \quad f: z \mapsto\left(z, R z^{4}\right) ; \\
\mathbf{S}^{1} & =\{z \in C:|z|=1\} ; \quad B=f\left(\mathbf{S}^{1}\right) .
\end{aligned}
$$

For $\alpha \in \mathbf{S}^{1}$, let

$$
H_{\alpha}=\left\{(z, w) \in \mathbf{C}^{2}: w \neq 0, w /|w|=\alpha\right\} .
$$

Then if $\beta^{4}=\alpha, B \cap H_{\alpha}=\{(\beta, \alpha R),(i \beta, \alpha R),(-\beta, \alpha R),(-i \beta, \alpha R)\}$.
Define a topological isomorphism

$$
\begin{aligned}
& g: \mathbf{S}^{1} \rightarrow \Gamma \subset \mathbf{U}(2), \quad g: u \mapsto g_{u}, \\
& g_{u}(z, w)=\left(u z, u^{4} w\right) .
\end{aligned}
$$

Clearly B is invariant under Γ.
Received September 9, 1976. The author gratefully acknowledges National Science Foundation graduate support. The author would like to thank Professor Frederick J. Almgren, Jr., for his kind help and counsel.

