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1. Introduction.

In [3], we studied various generalizations of the function log 7(2), where 5(2)
is Dedekind’s g-function. We called these functions Hecke integrals. Among
our examples of Hecke integrals was the function f,(2) which is defined as
follows: Let x be an odd, primitive, Dirichlet character of conductor b, and
let H denote the complex upper half-plane. Then we set

6 = 3 (xo KD

where ¥ denotes the complex conjugate character of x. We showed in [3] that
f«(#) satisfies the functional equations

fx + 1) = f,() (L.1)
1 ib N
fx<__> = _fx(z) + 7;_7'_(-)'(_)— L(L X) (12)

¥4

where L(s, x) is the usual Dirichlet L-series and 7(x) denotes the Gaussian
sum attached to x.

We discussed in [3] the relationship between the problem of estimating ()
and that of determining all imaginary quadratic fields having a given class
number. In this paper, we discuss another connection of the function f,(z)
with the arithmetic of imaginary quadratic fields.

It is clear from (1.1) and (1.2) that if ¢ = (g Z) belongs to the subgroup
G(6) of SL(2, R) generated by
1 b) (0 —1)
i(0 ) @dEy o)
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