SPHERICAL REARRANGEMENTS, SUBHARMONIC FUNCTIONS, AND *-FUNCTIONS IN *n*-SPACE

ALBERT BAERNSTEIN II

B. A. TAYLOR

1. Introduction.

Suppose that u is a real-valued function defined in a plane annulus $A = \{z : R_1 < |z| < R_2\}$ which is integrable on each circle $|z| = r, R_1 < r < R_2$. The *-function of u is the function u^* defined in A^+ , the open upper half of A, by

$$u^*(re^{i\theta}) = \sup_E \int_E u(re^{it}) dt$$
 $(R_1 < r < R_2, 0 < \theta < \pi)$

where the sup is taken over all sets $E \subset [-\pi, \pi]$ with Lebesgue measure 2θ . Alternatively,

$$u^*(re^{i\theta}) = \int_{-\theta}^{\theta} \tilde{u}(re^{it}) dt$$

where \tilde{u} is the function obtained from u by symmetric decreasing rearrangement on each circle. (cf. [4], Section 3).

The first author has shown ([4], Theorem A) that u^* enjoys the following property.

THEOREM A. If u is subharmonic in A, then u^* is subharmonic in A^+ .

This theorem has been the main tool in the solution of certain extremal problems involving univalent functions, Nevanlinna theory, and other branches of function theory. See [2], [3], [4], [5].

The present study grew out of an attempt to find an analogue of Theorem A for subharmonic functions in higher dimensions. It will be convenient to denote the dimension by p + 2. In the Euclidean space \mathbb{R}^{p+2} , $p \ge 1$, we consider for a point x the spherical coordinates r, θ defined by r = |x|, $x_1 = r \cos \theta$, where $x = (x_1, \cdots, x_{p+2})$ and $|x|^2 = \sum_{i=1}^{p+2} x_i^2$. (We will not need to consider the other angular coordinates). Let \mathbb{S}^{p+1} denote the unit sphere $\{x \in \mathbb{R}^{p+2} : |x| = 1\}$, $C(\theta_0)$ the spherical cap on \mathbb{S}^{p+1} given by $C(\theta_0) = \{x \in \mathbb{S}^{p+1} : 0 \le \theta < \theta_0\}$ and $d\sigma$ the surface area measure on \mathbb{S}^{p+1} . Suppose that u is a real-valued function defined in the spherical shell

$$A(R_1, R_2) = \{x \in \mathbf{R}^{\nu+2} : R_1 < |x| < R_2\}$$

Received December 26, 1975. This research partially supported by National Science Foundation Grant MPS73-08854 A02 (formerly GP-38959) (Baernstein) and GP-37628 (Taylor)