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BANACH SPACES WHICH ARE ASPLUND SPACES
I. NAMIOKA AND R. R. PHELPS

Dedicated to the memory of Edgar Asplund

A real Banach space E is called an Asplund space if every continuous convex
function defined on an open convex subset of E is Fréchet differentiable on a
dense @; subset of its domain. Asplund [1] called these ‘“‘strong differentiability
spaces’’ and he proved [1, Prop. 5] that the dual E* of such a space is what
we call a (DA)-space, that is E* satisfies the following:

If C is any weak* compact convex subset of E*, then C is the weak*
(DA) closed convex hull of those points in C' which are strongly exposed by a
functional from E.
We say that f € C is strongly exposed by x € E, ||z|| = 1, provided

M(z, C) = sup{g(z) : g € C} = f(2)

and ||f, — f|| = O whenever f, € C and f,(x) — f(x). Points f € C with this
property will be called weak* strongly exposed points of C; they form a (generally
proper) subset of the set of extreme points of C.

One of the main theorems (Theorem 6) in the present paper is the converse
to Asplund’s result: If E* is a (DA)-space, then E is an Asplund space. This
characterization of Asplund spaces in terms of their duals makes it possible
to prove a number of permanence properties for this class of spaces, properties
which so far have seemed to be intractable. We show, for instance, that sub-
spaces of Asplund spaces are again Asplund spaces and that the ¢, product
and the I, product (1 < p < «) of any family of Asplund spaces are Asplund
spaces. (Asplund [1] showed that this class of spaces is preserved under quotient
maps.) It is known that if E* is separable [1] or if E is reflexive [17], then
E is an Asplund space. We extend these results by showing the same con-
clusion holds if E* is weakly compactly generated (Corollary 7), a result ob-
tained independently, using a different proof, by Collier [4]. (Collier’s proof
can also be used to give an alternative proof of Theorem 6.)

Since Fréchet differentiability of a function depends on the topology of E
and not upon the particular norm which induces that topology, the property
of being an Asplund space s tnvariant under isomorphisms. As shown in [1],
if E admits an equivalent norm for which the dual norm is locally uniformly
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