THE REDUCING ESSENTIAL MATRICIAL SPECTRA OF AN OPERATOR

CARL PEARCY AND NORBERTO SALINAS

1. Introduction.

In this paper we continue our study of the reducing matricial spectra and the reducing essential matricial spectra of a (bounded, linear) operator initiated in [10].

Let \mathfrak{K} be a separable infinite dimensional complex Hilbert space and let $\mathfrak{L}(\mathfrak{K})$ denote the algebra of all operators on \mathfrak{K} . The ideal of all compact operators in $\mathfrak{L}(\mathfrak{K})$ will be denoted by $\mathbf{K}(\mathfrak{K})$ and the canonical quotient map from $\mathfrak{L}(\mathfrak{K})$ onto the (Calkin) algebra $\mathfrak{L}(\mathfrak{K})/\mathbf{K}(\mathfrak{K})$ will be denoted by π .

If \mathfrak{A} is a C*-algebra and n is a positive integer, then an n-dimensional representation φ of \mathfrak{A} is a *-algebra homomorphism from \mathfrak{A} into the C*-algebra \mathbf{M}_n of all $n \times n$ complex matrices. Such a representation φ will be called *irreducible* if $\varphi(\mathfrak{A}) = \mathbf{M}_n$ and will be called *non-degenerate* if the identity of the C*-algebra $\varphi(\mathfrak{A})$ coincides with the identity matrix $\mathbf{1}_n$ of \mathbf{M}_n . Given an operator T in $\mathfrak{L}(\mathfrak{M})$ we shall denote by $\mathfrak{C}^*(T)$ the C*-algebra generated by T and $\mathbf{1}_{\mathfrak{K}}$. Also, the C*-algebra $\pi(\mathfrak{C}^*(T))$ which is clearly the C*-algebra generated by $\pi(T)$ and $\pi(\mathbf{1}_{\mathfrak{K}})$ will be denoted by $\mathfrak{C}_{\mathfrak{e}}^*(T)$.

Following [10], for every operator T in $\mathfrak{L}(\mathfrak{K})$ and every positive integer n we define the *reducing* $n \times n$ spectrum of T to be the set $\mathbb{R}^n(T)$ consisting of all those matrices L in \mathbf{M}_n for which there exists a non-degenerate (but not necessarily irreducible) *n*-dimensional representation φ of $\mathbb{C}^*(T)$ such that $\varphi(T) = L$. Likewise, the *reducing essential* $n \times n$ spectrum of T is the set $\mathbb{R}_e^n(T)$ consisting of all those matrices L in \mathbf{M}_n for which there exists a non-degenerate (but not necessarily irreducible) *n*-dimensional representation ψ of $\mathbb{C}_e^*(T)$ such that $\psi(\pi(T)) = L$.

Our main objective in this paper is to obtain some further information concerning the sets $\mathbb{R}^n(T)$ and $\mathbb{R}_*^n(T)$ for a given operator T in $\mathfrak{L}(\mathfrak{M})$. In particular, we prove (Theorem 2.3) that these sets are upper semi-continuous functions of T with respect to the norm topology of $\mathfrak{L}(\mathfrak{M})$. In this study, special attention will be given to the class of *n*-normal operators in $\mathfrak{L}(\mathfrak{M})$. By definition, an *n*-normal operator in $\mathfrak{L}(\mathfrak{M})$ is an operator which is unitarily equivalent to an $n \times n$ operator matrix (acting in the usual fashion on the direct sum of *n* copies of \mathfrak{M}) whose entries are commuting normal operators. We prove the following extension of Berg's theorem [3]: If T and S are *n*-normal operators in $\mathfrak{L}(\mathfrak{M})$, then T is unitarily equivalent to a compact perturbation of S if and only if

Received January 26, 1975. Revision received April 21, 1975.