ERGODIC AUTOMORPHISMS AND LINEAR SPACES OF OPERATORS

ALAN HOPENWASSER

Introduction. This paper investigates some of the relations between ergodic theory and operator theory. To each ergodic measure preserving automorphism α on a Lebesgue measure space X one associates a unitary operator U_{α} acting on $L^2(X, m)$. As is well known, the unitary equivalence class of U_{α} is not enough to determine the conjugacy class of α . However, if we consider a larger family of operators, then the conjugacy class of α can be determined. Let \mathfrak{M} be the maximal self-adjoint algebra of all L° -multiplication operators on $L^2(X, m)$. Arveson, in [2], shows that the unitary equivalence class of the Banach algebra, \mathfrak{I}_{α} , generated by \mathfrak{M} and U_{α} determines the conjugacy class of α , and vice versa. Further, it is shown in [6] that if two such Banach algebras \mathfrak{I}_{α} are isometric, then either α is conjugate to β or α is conjugate to β^{-1} .

It is the purpose of this paper to prove similar results using a smaller family of operators, namely the linear manifold \mathfrak{N}_{α} generated by \mathfrak{M} and U_{α} . Of course, by the result quoted above, the unitary equivalence of \mathfrak{N}_{α} and \mathfrak{N}_{β} implies the conjugacy of α and β . We replace the unitary equivalence of \mathfrak{N}_{α} and \mathfrak{N}_{β} by the a priori weaker condition that they be completely isometric (see section 2 for a definition) and show that this implies α and β are conjugate. This result is readily obtained using results from [1]. The main theorem in this paper states that if \mathfrak{N}_{α} and \mathfrak{N}_{β} are isometric then either α is conjugate to β or α is conjugate to β^{-1} . Since there is no evident way to extend an isometry on \mathfrak{N}_{α} to one on \mathfrak{I}_{α} , the results of [6] cannot be utilized. Instead, we must investigate the nature of such an isometry and its relationship with the automorphisms α and β . This in turn requires a study of the interaction of U_{α} and certain multiplication operators, in particular, the projections in \mathfrak{N} .

We would like to thank L. T. Gardner for several very helpful conversations on the subject matter of this paper.

1. Notation and definitions. Throughout this paper (X, m) will denote a fixed Lebesgue measure space with m(X) = 1. All subsets of X which appear will be measurable, either by assumption or by a standard argument, whichever is appropriate. We omit the arguments and we invariably omit the adjective "measurable." A measure preserving automorphism α on X is said to be *ergodic* if each of its invariant subsets is either a null set or differs from X by a null set. Two ergodic measure preserving automorphisms α and β are *conjugate* if there exists a (necessarily measure preserving) automorphism σ such that $\alpha = \sigma\beta\sigma^{-1}$.

Received March 21, 1974.