POSITIVE QUASI-ORDERS ON SEMIGROUPS

MOHAN S. PUTCHA

Introduction. Positive quasi-orders on semigroups have been studied from different points of view by Tamura [10], [12], [13] and the author [5]. In the present paper we study yet other aspects of positive quasi-orders on semigroups. We relate them to the study of subdirect products of nil semigroups and of subsemigroups of \mathfrak{R} -semigroups. Some preliminary results on when a positive mapping attains a maximum are also obtained.

1. Preliminaries. Throughout, S will denote a semigroup and Z^+ the set of positive integers. If a, $b \, \varepsilon \, S$, we say $a \mid b$ (a divides b) if $b \, \varepsilon \, S^1 a S^1$. A semigroup S is called archimedean if for any a, $b \, \varepsilon \, S$, $a \mid b^i$ for some $i \, \varepsilon \, Z^+$. We will also need some concepts and results on semilattice decompositions of semigroups and S-indecomposable semigroups (see for example Tamura [8], [9], [10], [11] or the author [3], [4]). Finally we will need the notion of a partially ordered semigroup [1; p. 153].

By a quasi-order is meant a reflexive and transitive relation. A quasi-order π on S is called *positive* if for any a, $b \in S$, $a\pi ab$ and $a\pi ba$. This is of course the same as saying $|\subseteq \pi$. Let (P, \leq) be a partially ordered set. A mapping $\varphi: S \to P$ is called *positive* if $\varphi(ab) \geq \varphi(a)$ and $\varphi(ab) \geq \varphi(b)$ for all a, $b \in S$. There is of course a natural correspondence between positive quasi-orders and positive mappings [5]. This correspondence is so obvious that we use it without further comment.

DEFINITION. Let φ be a mapping of S into a partially ordered set (P, \leq) . Correspondingly, let π be a quasi-order on S.

- (1) An element $u \in S$ is a φ -idempotent if $\varphi(u^i) = \varphi(u)$ for all $i \in Z^+$. $b \in S$ is called φ -periodic if a power of b is a φ -idempotent. S is φ -periodic if each element of S is φ -periodic.
- (2) An element $u \in S$ is a π -idempotent if $u^i \pi u \pi u^i$ for all $i \in Z^+$. (If π is positive, this is the same as saying $u^i \pi u$ for all $i \in Z^+$.) $b \in S$ is called π -periodic if a power of b is a π -idempotent. S is π -periodic if each element of S is π -periodic.
- (3) S is φ -archimedean if for all a, b ε S there exists $i \varepsilon Z^+$ such that $\varphi(a) \leq \varphi(b^i)$.
 - (4) S is π -archimedean if for all a, $b \in S$ there exists $i \in Z^+$ such that $a \pi b^i$.
- 2. Subdirect product of nil semigroups. For notions of subdirect products of semigroups see, for example, [7]. Schein [7] has remarked that a semigroup

Received March 24, 1973. The author was supported by a National Science Foundation Graduate Fellowship.