DISTRIBUTIONS OF EXPONENTIAL GROWTH AND THEIR FOURIER TRANSFORMS

RICHARD D. CARMICHAEL

1. Introduction. Sebastião E Silva [13], [14] has defined the space of distributions of exponential growth Λ_{∞} and has shown that these distributions arise naturally from the study of functions, denoted \mathfrak{U}_{w}^{+} , which are analytic and of slow growth in the half planes Re (z) > k (Im (z) > k), $k = 0, 1, 2, \cdots$. In fact $f(z) \in \mathcal{U}_n^+$ if and only if f(z) is the Fourier-Laplace transform of an element $V \in \Lambda_{\infty}$ which has support in $[0, \infty)$. A corresponding result holds for the space \mathfrak{A}_w of analytic functions having slow growth in the half planes Re (z) < (-k) (Im (z) < (-k)), $k = 0, 1, 2, \dots$, where now the corresponding element of Λ_{∞} has support in $(-\infty, 0]$. Using these results, Sebastião E Silva has defined the tempered ultra-distributions [14]. Hasumi [9] has extended the results of Sebastião E Silva to n dimensions for the case where the analytic functions are defined in the octants $B_{\delta} = \{z \in \mathbb{C}^n : \delta_i \text{ (Im } (z_i)) > 0,$ $\delta = (\delta_1, \dots, \delta_n), \ \delta_i = \pm 1, \ j = 1, \dots, n$; so the corresponding element of Λ_{∞} , via the Fourier-Laplace transform, has support in a product of half lines. (For other interesting results concerning the space of distributions of exponential growth Λ_{∞} we refer to Yoshinaga [19] and Zieleźny [20], where the problems of convolution and multipliers in Λ_{∞} are discussed.)

Lauwerier [10] has considered a space of analytic functions which are closely connected with the \mathfrak{A}_w^+ and \mathfrak{A}_w^- functions of Sebastião E Silva. The functions f(z) which are analytic in Im (z) > 0 and which satisfy $|f(z)| \leq C_m (1 + |z|)^N$, Im $(z) \geq m > 0$ for all m > 0, have been denoted the G^+ functions by Lauwerier [10; p. 162], who has shown that such functions have a distributional boundary value in the weak topology of \mathbf{Z}' , the space of ultra-distributions of Gel'fand and Shilov [7]; this boundary value is the Fourier transform of an element in \mathfrak{D}' which has support in $[0, \infty)$. Further, the function $f(z) \in G^+$ can be represented as the Fourier-Laplace transform of this \mathfrak{D}' element. A similar result holds for the corresponding functions G^- which are analytic in the lower half plane. In Carmichael [2], [3] we have extended the results of Lauwerier concerning distributional boundary values in \mathbf{Z}' to n dimensions, first for the case of the octants and then for the case of arbitrary tubular radial domains, and have obtained several related results concerning the space of tempered distributions \mathfrak{S}' .

Distributional boundary value theorems concerning analytic functions which have slow growth are important in quantum field theory; in particular the boundary values can be interpreted as vacuum expectation values in a field

Received April 4, 1973.