ALMOST ISOMETRIES OF BANACH SPACES AND MODULI OF RIEMANN SURFACES

RICHARD ROCHBERG

1. Introduction and summary. Let S denote the set of compact bordered Riemann surfaces. For \bar{S} in S denote the interior of \bar{S} by S and the boundary of \bar{S} by $\partial \bar{S}$. \bar{S} and \bar{S}' in S will be called conformally equivalent if S and S' are. For \bar{S} in S the Riemann space of \bar{S} , denoted $R(\bar{S})$, is the set of conformal equivalence classes consisting of elements of S homeomorphic to S. The Teichmüller metric $D(\cdot, \cdot)$ on $R(\bar{S})$ is defined as follows. $D(\bar{S}, \bar{S}') = \inf \{\log K : \text{there is a quasiconformal homeomorphism of <math>S$ onto S' with dilitation $K\}$. (For a discussion of the Teichmüller metric in this context see Earle [6]. For a general discussion of quasiconformal maps and Teichmüller theory see Bers [4] and Ahlfors [1].) We will refer to the topology induced on R(S) by this metric as the moduli topology.

For \bar{S} in \bar{S} let A(S) be the supremum normed Banach algebra of functions continuous on \bar{S} and analytic on S. For \bar{S} and \bar{S}' in \bar{S} let L(A(S), A(S')) be the set of all continuous invertible linear maps from $A(\bar{S})$ to $A(\bar{S}')$. For T in L(A(S), A(S')) set $c(T) = (||T|| ||T^{-1}||)^{-1}$. Note that elements of L(A(S), A(S')) are not required to be algebra mappings. For \bar{S} in \bar{S} and \bar{S}_1 and \bar{S}_2 in $R(\bar{S})$ set $d(\bar{S}_1, \bar{S}_2) = \inf\{-\log c(T) : T \text{ in } L(A(S_1), A(S_2))\}$. (If $L(A(S_1), A(S_2))$ is empty, then $d(\bar{S}_1, \bar{S}_2) = \infty$.)

In a previous paper [11] the author proved the following theorem.

THEOREM 1. If \bar{S} in S is planar, then $d(\cdot, \cdot)$ is a metric on $R(\bar{S})$. The topology induced by this metric is equivalent to the moduli topology.

Although the definitions differ, the moduli topology defined above is the same as the m-topology of [11].

In this paper we will prove the following partial extension of Theorem 1 to all of S.

THEOREM 2. If \tilde{S} is in S, then $d(\cdot, \cdot)$ is a metric on $R(\tilde{S})$. The topology induced by this metric is coarser than the moduli topology.

If \bar{S} is homeomorphic to the unit disk, Theorem 2 is trivial. If \bar{S} is homeomorphic to an annulus, then Theorem 2 follows from Theorem 1. Hence we can assume in what follows that the universal covering surfaces of \bar{S} and of \hat{S} , the double of \bar{S} , are both conformally equivalent to the upper half-plane.

It is immediate that $d(\cdot, \cdot)$ depends only on the conformal equivalence classes of its arguments, is symmetric, is positive semidefinite, and satisfies

Received August 3, 1972.