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1. Introduction. Let co(n) be the number of distinct prime divisors of n.
Then estimates for Y,_< co(n) are well known [3]. On the other hand, estimates
for "’_< 1/(n) were only recently studied [1], [2]. (From here on, the prime
in a sum of the form _< 1/](n) means that the sum is taken over all n _< x
such that ](n) 0.)

Using Turan’s inequality, R. L. Duncan proves in [1] that

, co-- 0
log log x

nd then uses ghis result to show ghat f(n)/0() has average order one, where
a(n) stands for the gogal number of prime divisors of n.

In this paper, we obtain a much begger estimate for

_
1/o(n) and we also

obtain estimates for _< 1/(](n)) for a large class of arithmetical functions
I](n)} and an arbitrary positive integer k.

2. A result of A. Selberg and basic definitions. Before defining our class of
functions, we state a result of A. Selberg [4]. Restricted to the particular case
needed here the result may be stated as follows.

THEOREM A (Selberg). Let g(s, t) 1 bt(n)/n" ]or Re s z > 1,
and let ’,,-1 Ib,(n)! n- log/3 2n be uni]ormly bounded ]or Itl

_
B. Next, set

((s))’g(s, t) = at(n)/n" ]or r > 1. Then we have <_ a,(n) (g(1, t)/F(t))
x log’-’x + 0 (x logt-2x) uni]ormly ]or ltl <_ B, x >_ 2. (Here F(s) stands ]or
the Riemann zeta ]unction.)

DEFINITION 1. Let S denote the set of all real-valued arithmetical functions
satisfying the following two conditions.

(1) ](n) 0 ](n) _> 1 for each integer n _> 1.

DEFINITION 2. Given a (from now on, unless otherwise mentioned, a stands
for an arbitrary positive integer), we denote by S the set of those functions in S
for which C)

at (n) satisfies the conditions of Theorem A, with B 1 and
D(t) (g(1, t)/r(t)) C"+’[0, 1].
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