SOME SIMULTANEOUS EQUATIONS IN MATRICES

J. L. BRENNER

Let A_{1}, A_{2}, A_{3} be square matrices of dimension $r_{1} \times r_{1}, r_{2} \times r_{2}, r_{3} \times r_{3}$ respectively. Necessary and sufficient conditions for the existence of X_{1}, X_{2}, X_{3}, satisfying $A_{1}=X_{1} X_{2} X_{3}, A_{2}=X_{2} X_{3} X_{1}, A_{3}=X_{3} X_{1} X_{2}$, are (the Flanders conditions) that the elementary divisors of A_{i} corresponding to nonzero proper values be the same and that the elementary divisors corresponding to the proper value 0 deviate in degree by at most one unit. For $r>3$ conditions for the solvability of $A_{i}=\left(\prod_{i=i}^{r} X_{i}\right)\left(\prod_{i}^{i-1} X_{i}\right)$ are more complicated; an extra condition on the degrees of the elementary divisors corresponding to 0 is involved.

1. Introduction. This article is a continuation of [2] and is a complement to Flanders' article [3]. See also [1], [4], [5]. The coordinate-free background is the following. Let U_{i} be r finite-dimensional vector spaces over the complex numbers, $i=1(1) r$; let A_{i} be a given linear transformation of U_{i} into itself. Do there exist r linear transformations X_{i}, where X_{i} maps U_{i} into U_{i+1} (and $U_{r+1} \equiv U_{1}$), such that all the relations

$$
\begin{array}{rllllll}
A_{1} & = & X_{1} X_{2} & \cdots & & X_{r} & \\
A_{2} & = & X_{2} & \cdots & & X_{r} X_{1} & \\
& \vdots & & & & & \tag{1.01}\\
& \vdots & & & & & \\
A_{i} & = & & X_{i} & \cdots & X_{r} X_{1} & \cdots
\end{array} X_{i-1}
$$

hold? If U_{i} are all identical and A_{i} are all invertible (equivalent to nonsingular), Equations (1.01) are solvable if and only if A_{i} are similar [2]. For $r=2$ the problem was completely solved by H. Flanders. Necessary and sufficient conditions for solvability of $A_{1}=X_{1} X_{2}, A_{2}=X_{2} X_{1}$ are (i) A_{1}, A_{2} have the same nonzero proper values; (ii) the elementary divisors of A_{1}, A_{2} corresponding to every nonzero proper value are the same; (iii) if the degrees of the elementary divisors corresponding to the proper value 0 for A_{1} are $m_{1} \geq m_{2} \geq \cdots$ and for A_{2} are $n_{1} \geq n_{2} \geq \cdots$, then for every $\nu,\left|m_{\nu}-n_{\nu}\right| \leq 1$; and if for some ν there is no $n_{\nu}\left[m_{\nu}\right]$, then $m_{\nu}\left[n_{\nu}\right]$ is 1 . Permissible sets are for example ($3,2,1,1$) for the $m_{\nu},(3,3)$ for the n_{ν}. In this article, conditions (i), (ii), (iii) are called the Flanders conditions.

Received July 19, 1972. The author was partially supported by NSF GP 32527.

