PUSHING AN (n-1)-SPHERE IN Sⁿ ALMOST INTO ITS COMPLEMENT

ROBERT J. DAVERMAN

Bing [2] has proved that if Σ is a 2-sphere in the 3-sphere S^3 , U is one of its complementary domains, and ϵ is a positive number, then there exist a zerodimensional subset T of Σ and a map of Σ into $U \cup T$ such that no point is as much as ϵ in distance from its image. In discussing possible generalizations for an (n-1)-sphere Σ in the *n*-sphere S^n , Wilder [9] conjectured that T should be at most an (n-3)-dimensional subset of Σ . Here we provide a stronger solution to his conjecture. For $n \geq 5$, T can be obtained of dimension at most one. The property fundamental to this work is given in Theorem 2, namely, for a complementary domain U of an (n-1)-sphere Σ in S^n , $n \geq 5$, there exists a one-dimensional set F such that $U \cup F$ is 1-ULC.

1. Definitions and notation. For a positive integer k, I^k denotes a k-cell, ∂I^k its boundary, and Int I^k its interior.

Let S denote a space with a metric ρ . For $A \subset S$ and $\epsilon > 0$, $N_{\epsilon}(S)$ denotes $\{s \in S \mid \rho(s, A) < \epsilon\}$, diam A denotes the diameter of A, Cl A denotes the closure of A, and Bd A denotes the topological boundary of A in S. For two maps f and g of a compact space X into S, $\rho(f, g)$ is defined as lub $\{\rho(f(x), g(x)) \mid x \in X\}$.

Essential to the development of this paper are the ulc and ULC properties (See [8; 292 ff] and [3].). We define only the uniform properties required here. Let *i* be a nonnegative integer and *S* a space with (fixed) metric ρ . We say that *S* is *i*-ULC (uniformly locally *i*-connected) if corresponding to each $\epsilon > 0$ there exists a $\delta > 0$ such that each map of ∂I^{i+1} into a δ -subset of *S* can be extended to a map of I^{i+1} into an ϵ -subset of *S*. If *S* is *i*-ULC for $i = 0, 1, \dots, k$, then we say that *S* is ULC^k. Similarly, for $A \subset S$ we say that *A* is *i*-ULC in *S* if corresponding to each $\epsilon > 0$, there exists a $\delta > 0$ such that each be extended to a map of A^{i+1} into an ϵ -subset of *S* and A^{i+1} into an ϵ -subset of *S*. If *S* is *i*-ULC for *i* = 0, 1, \dots, k , then we say that *S* is ULC^k. Similarly, for $A \subset S$ we say that *A* is *i*-ULC in *S* if corresponding to each $\epsilon > 0$, there exists a $\delta > 0$ such that each map of ∂I^{i+1} into an ϵ -subset of *A* can be extended to a map of I^{i+1} into an ϵ -subset of *S*, which definition we apply here only in the case i = 1. Furthermore, we say that *S* is *i*-ulc (uniformly locally homologically *i*-connected) if to each $\epsilon > 0$, there corresponds a $\delta > 0$ such that each *i*-cycle (integer coefficients) supported on a δ -subset of *S* bounds homologically an (i + 1)-chain having support in an ϵ -subset of *S*. Again, *S* is ulc^k if it is *i*-ulc for $i = 0, \dots, k$.

We make applications of several techniques, results, and notations from [5]. In particular dim S denotes the dimension (covering, small inductive, large inductive) of a separable metric space S. Contrary to occasional usage in the

Received May 10, 1972. Revisions received August 10, 1972. The author was supported in part by NSF Grant GP19966.