# THE NUMBER OF $n \times n$ MATRICES OF RANK $r$ AND TRACE $\alpha$ OVER A FINITE FIELD 

PHILIP G. BUCKHIESTER

1. Introduction. Let $G F(q)$ denote a finite field of order $q=p^{y}, p$ a prime. Let $n$ be a positive integer, $r$ an integer such that $0 \leq r \leq n$, and $\alpha$ an element of $G F(q)$. The purpose of this paper is to determine the number $N(n, q, r, \alpha)$ of $n \times n$ matrices of rank $r$ and trace $\alpha$ over $G F(q)$. Since similar matrices have the same rank and trace, the first approach used by the author in an attempt to find $N(n, q, r, \alpha)$ was to consider canonical forms under similarity transformations. It appeared that in order to use this approach it would be necessary either to know all irreducible polynomials over a given finite field or to express the number $N(n, q, r, \alpha)$ in terms of the elements of a field $G F\left(q^{m}\right)$, an extension of $G F(q)$. Even if the latter approach had been feasible, it would have been necessary to express $N(n, q, r, \alpha)$ in terms of an expression containing summations extending over certain highly restricted partitions of the integer $n$.

In order to avoid the above difficulties, a difference equation in $N(n, q, r, \alpha)$, which appears in Section 3, was obtained. In Section 4 a solution to this difference equation is found.
2. Notation and preliminaries. Throughout this paper $A, B, \cdots$ will denote matrices over $G F(q)$. For a given matrix $A, \mathcal{G}[A]$ will denote the row space of $A$ and $\operatorname{CS}[A]$ will denote the column space of $A$. Let $g(s, t)$ denote the number of $s \times s$ matrices of rank $t$ over $G F(q)$. Landsberg [1] has found this number to be

$$
\begin{equation*}
g(s, t)=q^{t(t-1) / 2} \prod_{i=1}^{t} \frac{\left(q^{i-i+1}-1\right)^{2}}{\left(q^{i}-1\right)} \tag{2.1}
\end{equation*}
$$

Further, let $\Theta(n, q, r, \alpha)$ denote the set of all $n \times n$ matrices of rank $r$ and trace $\alpha$ over $G F(q)$.
3. A difference equation in $N(n, q, r, \alpha)$. Let $B$ be any element of $B(n, q, r, \alpha), 1 \leq r \leq n$. Then clearly $B$ may be expressed as

$$
B=\left[\begin{array}{ll}
A & C  \tag{3.1}\\
D & e
\end{array}\right]
$$

where $A$ is an $(n-1) \times(n-1)$ matrix of rank $r, r-1$, or $r-2, C$ and $D^{T}$ are $(n-1) \times 1$ vectors, and $e$ is in $G F(q)$. Let $M_{1}(n, q, r, \alpha)$ denote the number

[^0]
[^0]:    Received April 6, 1972. Revisions received June 1, 1972.

