THE NUMBER OF $n \times n$ MATRICES OF RANK rAND TRACE α OVER A FINITE FIELD

PHILIP G. BUCKHIESTER

1. Introduction. Let GF(q) denote a finite field of order $q = p^{*}$, p a prime. Let n be a positive integer, r an integer such that $0 \leq r \leq n$, and α an element of GF(q). The purpose of this paper is to determine the number $N(n, q, r, \alpha)$ of $n \times n$ matrices of rank r and trace α over GF(q). Since similar matrices have the same rank and trace, the first approach used by the author in an attempt to find $N(n, q, r, \alpha)$ was to consider canonical forms under similarity transformations. It appeared that in order to use this approach it would be necessary either to know all irreducible polynomials over a given finite field or to express the number $N(n, q, r, \alpha)$ in terms of the elements of a field $GF(q^{m})$, an extension of GF(q). Even if the latter approach had been feasible, it would have been necessary to express $N(n, q, r, \alpha)$ in terms of an expression containing summations extending over certain highly restricted partitions of the integer n.

In order to avoid the above difficulties, a difference equation in $N(n, q, r, \alpha)$, which appears in Section 3, was obtained. In Section 4 a solution to this difference equation is found.

2. Notation and preliminaries. Throughout this paper A, B, \cdots will denote matrices over GF(q). For a given matrix A, $\operatorname{RS}[A]$ will denote the row space of A and $\operatorname{CS}[A]$ will denote the column space of A. Let g(s, t) denote the number of $s \times s$ matrices of rank t over GF(q). Landsberg [1] has found this number to be

(2.1)
$$g(s, t) = q^{t(t-1)/2} \prod_{i=1}^{t} \frac{(q^{i-i+1}-1)^2}{(q^i-1)}.$$

Further, let $\mathfrak{B}(n, q, r, \alpha)$ denote the set of all $n \times n$ matrices of rank r and trace α over GF(q).

3. A difference equation in $N(n, q, r, \alpha)$. Let B be any element of $\mathfrak{B}(n, q, r, \alpha)$, $1 \leq r \leq n$. Then clearly B may be expressed as

$$(3.1) B = \begin{bmatrix} A & C \\ D & e \end{bmatrix},$$

where A is an $(n-1) \times (n-1)$ matrix of rank r, r-1, or r-2, C and D^{T} are $(n-1) \times 1$ vectors, and e is in GF(q). Let $M_1(n, q, r, \alpha)$ denote the number

Received April 6, 1972. Revisions received June 1, 1972.