COMPATIBILITY THEOREMS FOR INFINITE DIFFERENTIAL SYSTEMS

By E. J. Pellicciaro

1. Introduction. Theorem 3 below is an extension to infinite differential systems of the main theorem of [2]. It represents a generalization of M. Bôcher's Lemma 1 of [1], of W. M. Whyburn's Lemma 2 of [5], and of Theorem 6.13 of W. T. Reid's comprehensive treatment of infinite differential systems [4]. Theorem 2, of which Theorem 3 is a consequence, is also a generalization of their theorems. It is further noted that Corollary 2 and Lemma 3, results of Theorem 2, compare with Reid's Theorem 6.12 upon which his Theorem 6.13 depends, and similarly with Bôcher's Theorem 1 and Whyburn's Lemma 1.

Let p denote a real number with $p>1$ arbitrary but fixed, and let l_{p} denote the set of all sequences $u=\left(u_{i}\right)=u_{1}, u_{2}, \cdots$ of real numbers for which $\sum_{i=1}^{\infty}\left|u_{i}\right|^{p}$ converges. The norm $\|\cdot\|_{p}$ for the elements u of l_{p} is taken to be $\|u\|_{p}=\left(\sum_{i=1}^{\infty}\left|u_{i}\right|^{\nu}\right)^{1 / p}$. The elements of l_{p} together with $\|\cdot\|_{p}$ are called vectors in l_{p} or l_{p} vectors, where the usual notions concerning vectors apply. The set l_{a} of vectors with associated norm $\|\cdot\|_{q}$ complementary to the vectors in l_{p} is defined as were those in l_{p} with p replaced by $q=p /(p-1)$.

All matrices, unless otherwise indicated, are infinite matrices $A=\left[A_{i i}\right]$, $i, j=1,2, \cdots$, the entries $A_{i j}$ are real numbers, E being used to denote the identity matrix. As in [3], a matrix A is said to be bounded or is called a bounded matrix if and only if there exists a real number K such that

$$
\left|\sum_{i, j=1}^{n} A_{i i} u_{i} v_{i}\right| \leq K\left(\sum_{i=1}^{n}\left|u_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|v_{i}\right|^{q}\right)^{1 / q}
$$

holds for $n=1,2, \cdots$ and for every l_{p} vector u and for every l_{q} vector v. In this case A is said to be bounded by K, and K is called a bound of A. The definition implies the columns and rows of a bounded matrix are respectively vectors in l_{p} and l_{a}.

If A is a bounded matrix, then A defines a continuous linear mapping f of l_{p} into l_{p} by means of $f(u)=A u=\left(\sum_{i=1}^{\infty} A_{i j} u_{j}\right)$. Indeed, if K is a bound of A, then $\|A u\|_{D} \leq K\|u\|_{p}$. Moreover, A also defines a continuous linear mapping g of l_{a} into l_{a} via $g(v)=v A=\left(\sum_{i=1}^{\infty} A_{i j} v_{i}\right)$ with $\|v A\|_{a} \leq K\|v\|_{a}$. If, on the other hand, it is known that A is a matrix which defines a continuous linear mapping f of l_{p} into l_{p} as described above (implying in turn the existence of a K such that $\|A u\|_{p} \leq K\|u\|_{p}$ for every l_{p} vector u), then A is bounded by K. The same conclusion follows if it is known that A defines a continuous linear mapping of l_{a} into l_{a} with $\|v A\|_{a} \leq K\|v\|_{a}$. With this then, the norm of a bounded matrix $A,\|A\|$, is taken to mean the greatest lower bound of the set of all

[^0]
[^0]: Received January 2, 1970. Revision received April 5, 1971. Made possible through the support of NASA Grant 08-001-016.

