ON THE FOURIER SERIES OF CERTAIN CHARACTERISTIC FUNCTIONS ON SU (2)

By R. A. MAYER

Let G = SU(2) be the group of 2×2 unitary matrices with determinant 1. For each natural number n let E_n be the unique minimal closed two-sided ideal of dimension n^2 in the convolution algebra $L^2(G)$. Let χ_n denote the unique irreducible character in E_n and let P_n denote the orthogonal projection of $L^2(G)$ onto E_n . Then

$$P_n f = n \chi_n * f$$

for all $f \in L^2(G)$, where * denotes convolution. If $f \in L^2(G)$, write

$$S_n f = \sum_{j=1}^n P_j f$$

and call $S_n f$ the *n*-th partial sum of the Fourier series for f. We will say that the Fourier series for f converges to b at x if $\lim_{n\to\infty} S_n f(x) = b$. Let M be a 3-dimensional compact submanifold-with-boundary of G (so that the interior M^0 of M is open in G). Define the modified characteristic function ϕ_M of M by

$$\phi_M(x) = 1 \quad \text{if} \quad x \in M^0$$
$$= \frac{1}{2} \quad \text{if} \quad x \in \partial M$$
$$= 0 \quad \text{if} \quad x \notin M.$$

Let θ be the function on G defined by

(3)
$$\theta(x) = \arccos\left(\frac{1}{2}\operatorname{trace} x\right) = \arccos\left(\frac{1}{2}\chi_2(x)\right)$$

so that the eigenvalues of x are exp $(\pm i\theta(x))$. We consider G to be a metric space with the translation invariant metric ρ defined by

(4)
$$\rho(x, y) = \theta(xy^*)$$

where y^* denotes the adjoint of the matrix y. Let S(x, r) denote the sphere with center at x and radius r. Then it is easy to verify that $S(x, r) = S(-x, \pi - r)$. We will call both x and -x the centers of S(x, r). We have

(5)
$$\chi_n(x) = \sin n\theta(x)/\sin \theta(x) \qquad n \ge 1$$

(by [9; 151 and 163]). We will prove the following result.

THEOREM. Let M be a 3-dimensional compact analytic submanifold-withboundary of SU(2) and let ϕ_M be the modified characteristic function of M. Then

Received February 28, 1969.