SEMINORMAL AND C-COMPACT SPACES

By Giovanni Viglino

Introduction. In a previous paper [7], the author has defined a space (X, τ) to be C-compact if given a closed subset Q of X and a τ -open cover \mathfrak{O} of Q, then there exists a finite number of elements in \mathfrak{O} , say \mathfrak{O}_i , $1 \leq i \leq n$, with $Q \subset \bigcup_{i=1}^n \overline{\mathfrak{O}}_i$. Every continuous function from a C-compact space into a Hausdorff space is closed and there exist C-compact Hausdorff spaces which are not compact [7].

In § one an example is given showing that the product of C-compact spaces need not be C-compact, thus resolving one of the questions posed in [7]. The property "seminormal" is introduced in § two, and some relations between this concept and that of C-compactness are examined in § 3.

All spaces in this paper are assumed to be Hausdorff.

I. Product of C-compact spaces. The example in this section shows that even the product of a C-compact space with the closed unit interval need not be C-compact. However, if a product is C-compact, then each factor is C-compact.

THEOREM 1. If $X = \prod_{\alpha} X_{\alpha}$, where no X_{α} is empty, is C-compact, then each X_{α} is C-compact.

Proof. A direct consequence of the easily established fact that the continuous image of a *C*-compact space is *C*-compact.

Example 1. Let Z represent the set of positive integers. Let Y denote the subset of the plane consisting of all points of the form (1/n, 1/m) and the points of the form (1/n, 0) for n and m in Z. Let $X = Y \cup \{\infty\}$. Topologize X as follows: Let each point of the form (1/n, 1/m) be open. Partition Z into infinitely many infinite equivalence classes, $\{Z_i\}_{i=1}^{\infty}$. Let a neighborhood system for the point (1/i, 0) be composed of all sets of the form $0 \cup F$, where

$$0 = \left\{ \left(\frac{1}{i}, 0\right) \right\} \cup \left\{ \left(\frac{1}{i}, \frac{1}{m}\right) \mid m \ge k \right\}$$

and

$$F = \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) \mid m \in Z_i \text{ and } n \geq k \right\}$$

for some $k \in \mathbb{Z}$. Let a neighborhood system for the point ∞ be composed of all sets of the form $X \setminus T$ where

$$T = \left\{ \left(\frac{1}{n}, 0\right) \mid n \in Z \right\} \cup \bigcup_{i=1}^{k} \left\{ \left(\frac{1}{i}, \frac{1}{m}\right) \mid m \in Z \right\} \cup \left\{ \left(\frac{1}{n}, \frac{1}{m}\right) \mid m \in Z_{i}, n \in Z \right\}$$

Received February 24, 1969; in revised form October 15, 1969.