GROUPS WITH MANY EQUAL CLASSES

By I. M. Isaacs

In this paper we consider finite groups G, which contain a proper normal subgroup N such that all of the conjugacy classes of G which lie outside of N have equal sizes. A nonabelian group with this property will be said to satisfy condition (*). Our main result is

Theorem. Let G satisfy $\left(^{*}\right)$ with respect to N. Then either G / N is cyclic, or else every nonidentity element of G / N has prime order. In the first situation, G has an abelian Hall π-subgroup and a normal π-complement, where π is the set of primes dividing the index, $|G: N|$.

The first possibility occurs, for instance, when G is a Frobenius group with kernel N and a cyclic complement. It is not hard to construct examples of the second possibility where G / N is isomorphic to the symmetric group Σ_{3} or to the nonabelian group of order p^{3} and period p for any odd prime. These examples will be sketched at the end of the paper.
Before proving the theorem we draw some easy conclusions from the hypothesis $\left(^{*}\right)$ and prove some preliminary results. Let $x \varepsilon G-N$. Then $|\mathbf{C}(x)|$ is independent of x. Let $C_{x}=\mathbf{C}(\mathbf{C}(x))$. Since $x \varepsilon \mathbf{C}(x), C_{x} \subseteq \mathbf{C}(x)$ so $C_{x}=\mathbf{Z}(\mathbf{C}(x))$ is abelian. Since G is not abelian, $C_{x}<G$ and $G=N \cup \bigcup_{x} C_{x}$. Now suppose for $x, y \varepsilon G-N$ that $C_{x} \cap C_{y} \Phi N$. Choose $u \varepsilon C_{x} \cap C_{y}-N$. Then $\mathbf{C}(u) \supseteq$ $\langle\mathbf{C}(x), \mathbf{C}(y)\rangle$. Since $|\mathbf{C}(u)|=|\mathbf{C}(x)|=|\mathbf{C}(y)|$, we have $\mathbf{C}(x)=\mathbf{C}(y)$ and $C_{x}=C_{y}$. This also shows that for any $u \varepsilon C_{x}-N$ we have $\mathbf{C}(x)=\mathbf{C}(u)$. This situation suggests the following definition which will be exploited in Proposition 4.

Definition 1. Suppose that $N \triangle G$ and $G=N \cup \bigcup_{i} H_{i}$ where the $H_{i}<G$ are subgroups satisfying $H_{i} \cap H_{i} \subseteq N$ when $i \neq j$. In this situation we say that G is partitioned relative to N.

The following lemma will be used to prove Proposition 3, which is a weak version of the theorem.

Lemma 2. Let G satisfy $\left(^{*}\right)$ and let $x \varepsilon G-N$. Suppose $\bar{x}=x N \varepsilon G / N=\bar{G}$ is not a p-element of \bar{G}. Then an S_{p} subgroup of $\mathbf{C}(x)$ is central in $\mathbf{C}(x)$. If the order, $o(\bar{x})$ is divisible by two distinct primes, then $\mathbf{C}(x)$ is abelian and $\mathbf{C}(x)=C_{\star}$.

Proof. Suppose $y \varepsilon \mathbf{C}(x)$ is a p-element so $y^{p^{r}}=1$. Then $(x y)^{p^{r}}=x^{p^{r}} \notin N$. We have $\mathbf{C}(x y) \subseteq \mathbf{C}\left((x y)^{\nu r}\right)$, and these groups have equal orders so

$$
\mathbf{C}(x y)=\mathbf{C}\left((x y)^{\nu^{r}}\right)=\mathbf{C}\left(x^{\nu^{r}}\right) \supseteq \mathbf{C}(x) .
$$

Received September 16, 1968.

