RESEARCHES ON PARTITIONS

By Joseph Arkin

In this paper we shall find explicit formulas for the number of partitions of n into parts not exceeding m for certain values of m. We denote by $p_{m}(n)$ the number of partitions of n into parts not exceeding m, where

$$
\begin{equation*}
F_{m}(x)=1 /(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{m}\right)=\sum_{n=0}^{\infty} p_{m}(n) x^{n} \tag{1}
\end{equation*}
$$

and $p_{m}(0)=1$.
It is interesting to note that Cayley [2] found formulas for $m=1$ through 6 inclusive, but did not go on to $m=7$. To express $p_{7}(n)$ by Cayley's method requires the use of 420 polynomials each of degree 6 . In fact, to determine explicit formulas for $p_{6}(n)(n=0,1,2, \cdots)$ Cayley had to use 60 polynomials each of degree 5 .

Now, because of the new method introduced in this paper, for the first time, we are able to find explicit formulas for the $p_{m}(n)$ with values of m that are greater than 6.

We define

$$
\begin{equation*}
A(m, n)=1 \quad \text { if } m \text { divides } n \tag{2}
\end{equation*}
$$

and

$$
A(m, n)=0 \quad \text { if } m \text { does not divide } n
$$

where

$$
m=1,2,3, \cdots, \quad n=0,1,2, \cdots,
$$

and

$$
A(m, 0)=1
$$

(For example $A(15,25)=A(3,2)=0$ and $A(11,22)=A(3,3)=1$.)
Now, by (1) it is seen that the product

$$
F_{m}(x) \sum_{n=0}^{\infty} x^{m n+n}=F_{m+1}(x),
$$

and by comparing coefficients we have

$$
\begin{align*}
& p_{m+1}(n)=p_{m}(n)+p_{m}(n-m-1) \tag{3}\\
& \quad+p_{m}(n-2 m-2)+p_{m}(n-3 m-3) \cdots
\end{align*}
$$

where $m=1,2,3, \cdots$, and $n=0,1,2, \cdots$.
Received August 10, 1968. The author is grateful to Professor L. Carlitz for his encouragement and guidance.

