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1. Introduction. This paper does not assume familiarity with the literature
of regularly monotonic functions [2].

Let e be a function defined on {0, 1, 2, with values in {--1, 11. An
infinitely-often differentiable function on an open interval I will be called
,-monotonic in I if for n 0, 1, 2, and all x, I

e(n)l ’’) (x) >__. O.

A function which is e-monotonic for some e is called regularly monotonic.
We define v,(n) for n 0, 1, 2, as follows: if there exists a least positive

integer m with e(n)e(n -!- 1) -e(n A- m)e(n nu m nu 1), then v,(n) m,
otherwise v,(n) oo. Let e belong to A or B according as v, assumes the value
o or not. The set {0, 1, 2, may be decomposed into a succession of
disjoint blocks [1] by letting every n with v,(n) 1 be the last element of a
block.

In case e A, let n be minimal such that ,(n) o. In other words, let n
be the first element of the last block. If we set e(n)e(n A- 1), then for
any e-monotonic ] on I, I] (") (zx)] is absolutely monotonic (all derivatives are
non-negative) on {x ax t I}. By using [3; Theorem 3a] one can conclude
that ] can be continued analytically into the open disk with centre an endpoint
of I (the left one if 1, the right one if -1) and with radius the length
of I. If the latter is infinite, the disk becomes a plane or half-plane.

In the case e t B, to which we restrict our attention from here on, there are
infinitely many blocks each of finite length. It can be shown that an e-monotonic
] must either be a polynomial or else have a finite interval as domain, so that
we may choose I (-1, 1) without loss of generality.
From now on we write v instead of v,. Let ,(k) be the number of elements

in the lc-th block. Thus h(1) (0), and, in general, h(r A- 1) v(A(r)) where

 t(r)

In this paper we shall often employ the conventions that the empty sum has
the value 0 and the empty product the value 1. Here, for example, A(0) 0,
and in 2.5 II(0) 1.
Our goal is
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