O^N-APPROXIMABLE AND HOLOMORPHIC FUNCTIONS ON COMPLEX SPACES

BY YUM-TONG SIU

In [5] Spallek proved the following two statements:

- (1) For every point x of an analytic subvariety X of an open subset of \mathbb{C}^n there exist a neighborhood system \mathfrak{U} of x in X and a natural number $N = N(\mathfrak{U})$ depending on \mathfrak{U} such that, if f is a weakly holomorphic function on U for some U \mathfrak{e} \mathfrak{U} and Re f is the restriction to U of an N times differentiable function on some open neighborhood of U in \mathbb{C}^n , then f is strongly holomorphic on U ([5, Satz 4.2] and Zusatz bei Korrektur).
- (2) For every point x of a reduced complex space X there exists a natural number N = N(x) depending on x such that, if f is a weakly holomorphic function-germ at x and Re f is O^{N} -approximable in some neighborhood of x, then f is a strongly holomorphic function-germ at x ([5, Satz 3.6] and Zusatz bei Korrektur).

A natural question arises: whether N(x) in (2) can be chosen to be locally independent of x. In this paper we prove that this is the case:

THEOREM 1. For every compact subset K of a reduced complex space X there exists a natural number N = N(K) depending on K such that, if f is a weakly holomorphic function-germ at $x \in K$ and Re f is O^N -approximable in some neighborhood of x, then f is a strongly holomorphic function-germ at x.

Obviously Theorem 1 implies (1) and, moreover, it implies that in (1) $N = N(\mathfrak{U})$ can be chosen to be independent of \mathfrak{U} if every member of \mathfrak{U} is contained in a fixed compact subset of X.

In what follows complex spaces and complex subspaces are in the sense of Grauert [2, §1], i.e. their structure-sheaves may have non-zero nilpotent elements. Subvarieties are subsets of complex spaces defined locally by the vanishing of a finite number of holomorphic functions on their reductions. For a local ring R, m(R) denotes the maximal ideal of R. $_{n}O$ denotes the structure-sheaf of \mathbf{C}^{n} .

Theorem 1 will be derived from the following theorem which by itself is of interest:

THEOREM 2. Suppose \mathfrak{F} is a coherent analytic sheaf on a complex space (X, \mathfrak{F}) . Then for every relatively compact open subset Q of X there is a natural number N = N(Q) depending on Q such that, if $\mathfrak{s} \mathfrak{e} \Gamma(U, \mathfrak{F})$ for some open subset U of Q and $\mathfrak{s}_x \mathfrak{e} m(\mathfrak{K}_x)^N \mathfrak{F}_x$ for $x \mathfrak{e} U$, then $\mathfrak{s} = 0$.

For the proof of Theorem 2 we need the following:

Received October 30, 1967.