MATRICES OF SCHUR FUNCTIONS

BY MARVIN MARCUS AND SUSAN M. KATZ

1. Statements. In a recent announcement [1], J. E. de Pillis stated the following result:

Let H be an $mn \times mn$ positive semi-definite hermitian matrix, and partition H into $m^2 n \times n$ matrices H_{st} , s, $t = 1, \dots, m$. Let $1 \le q \le n$ and let e_{st} denote the q-th elementary symmetric function of the eigenvalues of the matrix H_{st} , i.e., $e_{st} = E_q(H_{st})$. Then the $m \times n$ matrix $E = (e_{st})$ is positive semi-definite hermitian also.

In the present paper we prove a substantial generalization of this theorem as a consequence of an elementary lemma on traces of submatrices of hermitian matrices.

In order to state our result we introduce a general class of polynomial functions known as Schur functions. Thus let G denote a subgroup of the symmetric group of degree $p, S_p, 1 \leq p \leq n$, and let χ be a non-zero character of degree one on G. Define an equivalence relation " \sim " on the set $\Gamma_{p,n}$ of all n^p sequences $\omega = (\omega_1, \dots, \omega_p), 1 \leq \omega_i \leq n, i = 1, \dots, p$, as follows: two sequences α and β are equivalent, i.e., $\alpha \sim \beta$, if and only if there exists $\sigma \in G$ such that

$$\alpha^{\sigma} = (\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(p)}) = \beta.$$

Let Δ_n denote the system of distinct representatives in $\Gamma_{p,n}$ for "~" in which each sequence α in Δ_n is lowest in lexicographic order in the equivalence class in which it lies. Define a subset $\overline{\Delta}_n$ of Δ_n as follows: $\overline{\Delta}_n$ is the set of all sequences $\alpha \in \Delta_n$ for which $\chi \equiv 1$ on the stabilizer G_{α} in G. Here $G_{\alpha} = \langle \sigma \mid \sigma \in G$ and $\alpha^{\sigma} = \alpha \rangle$. Let $\nu(\alpha)$ denote the order of G_{α} . The Schur function associated with G and χ is the polynomial

(1)
$$f_{G,\chi}(\gamma_1, \cdots, \gamma_n) = \sum_{\omega \in \overline{\Delta}_n} \prod_{t=1}^n \gamma_t^{m_t(\omega)},$$

in which $m_t(\omega)$ is the number of times the integer t occurs in ω . If X is an $n \times n$ matrix, we define

$$f_{G,\chi}(X)$$

to be $f_{\sigma,\chi}(\gamma_1, \cdots, \gamma_n)$, where $\gamma_1, \cdots, \gamma_n$ are the eigenvalues of X.

The first main result is the following:

Received October 2, 1967. The research of both authors was supported by the U. S. Air Force Office of Scientific Research under Grant 698-67.