MATRICES OF SCHUR FUNCTIONS

By Marvin Marcus and Susan M. Katz

1. Statements. In a recent announcement [1], J. E. de Pillis stated the following result:

Let H be an $m n \times m n$ positive semi-definite hermitian matrix, and partition H into $m^{2} n \times n$ matrices $H_{s t}, s, t=1, \cdots, m$. Let $1 \leq q \leq n$ and let $e_{s t}$ denote the q-th elementary symmetric function of the eigenvalues of the matrix $H_{s t}$, i.e., $e_{s t}=E_{q}\left(H_{s t}\right)$. Then the $m \times n$ matrix $E=\left(e_{s t}\right)$ is positive semi-definite hermitian also.

In the present paper we prove a substantial generalization of this theorem as a consequence of an elementary lemma on traces of submatrices of hermitian matrices.

In order to state our result we introduce a general class of polynomial functions known as Schur functions. Thus let G denote a subgroup of the symmetric group of degree $p, S_{p}, 1 \leq p \leq n$, and let χ be a non-zero character of degree one on G. Define an equivalence relation " \sim " on the set $\Gamma_{p, n}$ of all n p sequences $\omega=\left(\omega_{1}, \cdots, \omega_{p}\right), 1 \leq \omega_{i} \leq n, i=1, \cdots, p$, as follows: two sequences α and β are equivalent, i.e., $\alpha \sim \beta$, if and only if there exists $\sigma \varepsilon G$ such that

$$
\alpha^{\sigma}=\left(\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(p)}\right)=\beta .
$$

Let Δ_{n} denote the system of distinct representatives in $\Gamma_{p, n}$ for " \sim " in which each sequence α in Δ_{n} is lowest in lexicographic order in the equivalence class in which it lies. Define a subset $\bar{\Delta}_{n}$ of Δ_{n} as follows: $\bar{\Delta}_{n}$ is the set of all sequences $\alpha \varepsilon \Delta_{n}$ for which $\chi \equiv 1$ on the stabilizer G_{α} in G. Here $G_{\alpha}=\langle\sigma| \sigma \varepsilon G$ and $\left.\alpha^{\sigma}=\alpha\right\rangle$. Let $\nu(\alpha)$ denote the order of G_{α}. The Schur function associated with G and χ is the polynomial

$$
\begin{equation*}
f_{G, x}\left(\gamma_{1}, \cdots, \gamma_{n}\right)=\sum_{\omega \varepsilon \bar{\Lambda}_{n}} \prod_{t=1}^{n} \gamma_{t}^{m t(\omega)} \tag{1}
\end{equation*}
$$

in which $m_{t}(\omega)$ is the number of times the integer t occurs in ω. If X is an $n \times n$ matrix, we define

$$
f_{G, x}(X)
$$

to be $f_{G, x}\left(\gamma_{1}, \cdots, \gamma_{n}\right)$, where $\gamma_{1}, \cdots, \gamma_{n}$ are the eigenvalues of X.
The first main result is the following:
Received October 2, 1967. The research of both authors was supported by the U. S. Air Force Office of Scientific Research under Grant 698-67.

