THE AUTOMORPHISM GROUP OF A LOCALLY COMPACT GROUP

By S. P. WANG

Introduction. Let G be a locally compact topological group, and let A(G) denote the group of all topological group automorphisms of G. In general A(G) with the compact-open topology is not a topological group and some finer topology has to be adapted. If K is a compact subset of G and V is a neighborhood of 1 in G, we denote by N(K, V) the set of all elements α of A(G) such that $\alpha(x)x^{-1}$ and $\alpha^{-1}(x)x^{-1}$ belong to V for every x in K. Then the sets N(K, V) constitute a fundamental system of neighborhoods of the identity which gives the usual topological group or a Lie group, the topology of A(G) coincides with the compact-open topology. In this paper we shall study the following question: For which groups is this topology simply the compact-open topology of A(G) is the compact-open topology. Our main result is that G has property (P) provided G/G_0 has property (P) where G_0 is the identity component of G.

1. Limit of net of elements of A(G). It is clear that G has property (P) if and only if for any net $\{\alpha_{\lambda}\}$ of elements of A(G) converging to the identity automorphism $\mathbf{1}_{G}$ with respect to the compact-open topology, $\{\alpha_{\lambda}^{-1}\}$ converges to $\mathbf{1}_{G}$ with respect to the compact-open topology. In this section, we study limit of net of elements of A(G) with respect to the compact-open topology.

LEMMA 1.1. Let $\{\alpha_{\lambda}\}$ be a net of elements of A(G) converging to 1_{σ} with respect to the compact-open topology, and N be a compact normal subgroup of an open subgroup H of G such that H/N is a Lie group. Then $\alpha_{\lambda}(N) \subset N$ holds for large λ .

Proof. Let V be a neighborhood of 1 in H such that VN/N has no small subgroups in H/N. Since $\{\alpha_{\lambda}\}$ converges to $1_{\mathcal{G}}$ with respect to the compact-open topology, $\alpha_{\lambda}(N) \subset VN$ for $\lambda > \lambda_{0}$. Hence $\alpha_{\lambda}(N) \subset N$ for $\lambda > \lambda_{0}$.

LEMMA 1.2. Let $\{\alpha_{\lambda}\}$ be a net of elements of A(G) converging to 1_{G} with respect to the compact-open topology and suppose the set $\{\alpha_{\lambda}^{-1}(x_{0}) : \lambda > \lambda_{0}\}$ has compact closure in G. Then the net $\{\alpha_{\lambda}^{-1}(x_{0})\}$ converges to x_{0} in G.

Proof. Let K be a compact subset containing the set $\{\alpha_{\lambda}^{-1}(x_0) : \lambda > \lambda_0\}$. Given any symmetric neighborhood V of 1, $\alpha_{\lambda}(k)k^{-1} \in V$ holds for all $k \in K$ and $\lambda > \lambda_1$. Hence in particular, $x_0\alpha_{\lambda}^{-1}(x_0^{-1}) = \alpha_{\lambda}(\alpha_{\lambda}^{-1}(x_0))\alpha_{\lambda}^{-1}(x_0^{-1}) \in V$, for all $\lambda > \lambda_1$. It follows that $\alpha_{\lambda}^{-1}(x_0) \in Vx_0$, for $\lambda > \lambda_1$, and we get $\lim_{\lambda} \alpha_{\lambda}^{-1}(x_0) = x_0$.

Received September 25, 1967. Partially supported by NSF Grant GP-7952X; the author would like to thank the referee for his helpful suggestions.