ON NON-MEASURABLE SETS

By Donald W. Solomon

In this paper we discuss the existence and structure of non-measurable sets in a Romanovski space (a second countable, locally compact metric space X on which is defined a complete regular measure μ, positive on non-void open sets, for which there is a base \mathbb{Q} of the topology of X satisfying ten axioms given by P. Romanovski in 1941 (see, e.g., [6; §1.2]). To this end, we introduce a concept of "non-measurable kernel" in the space X and show that the non-measurable behavior of a set $E \subseteq X$ is, in a certain sense, totally governed by that of a nonmeasurable kernel contained in it. For all Romanovski spaces X it is shown that every set $E \subseteq X$ of positive outer measure is either a non-measurable kernel or can be written as the union of two disjoint non-measurable kernels each of which has outer measure equal to that of E. It should be recalled that every finite-dimensional Euclidean space, E^{n}, with Lebesgue measure and proper choice of \mathfrak{Q}, is an example of a Romanovski space, so that our results are applicable to all such spaces. Throughout this paper, the notation, definitions and conventions of [6] and [7] will be adopted.

I. Non-measurable kernels.

1. Definition. We call a non-measurable set $E \subseteq X$ a non-measurable kernel if $H \subseteq E$ and H measurable implies H is of measure zero.

Alternatively, a set E having positive outer measure is a non-measurable kernel if and only if E^{c} intersects every measurable set of positive measure.
2. Theorem. Let $E \subseteq X$ be non-measurable. Then there is a non-measurable kernel $E^{*} \subseteq E$ such that:
(1) for every set $H \subseteq X, \mu^{*}(H \cap E)=\mu^{*}\left(H \cap E^{*}\right)+\mu^{*}\left(\left[E-E^{*}\right] \cap H\right)$;
(2) $E-E^{*}$ is measurable. Specifically, E^{*} may be chosen to be

$$
\left\{x \varepsilon E: \Phi^{*}\left(E^{c}, x\right)>0\right\}=\left\{x \varepsilon E: \Phi^{*}\left(E^{c}, x\right)=1\right\} \cup Z
$$

where $\mu^{*}(Z)=0$ (for the definition of Φ^{*} and Φ^{*}, see [7, II].
Proof. Let E be non-measurable, $E_{1}=E$ and $E_{2}=E^{c}$,

$$
E_{i}\left(E_{i}\right)=\left\{x \varepsilon E_{i}: \Phi^{*}\left(E_{i}, x\right)>0\right\}
$$

$i \neq j, i=1$, 2. Then, by [7, Theorems 1.2 and 2.6], $\mu^{*}\left(E_{1}\left(E_{2}\right)\right)=\mu^{*}\left(E_{2}\left(E_{1}\right)\right)$ >0. From ([7], Theorem 2.9], $\Phi^{*}\left(E_{i}, x\right)=1$ for almost all $x \varepsilon E_{i}\left(E_{i}\right)$. Be-

Received September 7, 1967. The research for this paper was supported by NSF grant no. GP-6815.

