$\mathrm{G}_{\boldsymbol{\delta}}$ SECTIONS AND COMPACT-COVERING MAPS

By E. Michael

1. Introduction. A continuous map $f: E \rightarrow F$ is called compact-covering if every compact subset of F is the image of some compact subset of E. Bourbaki [$2 ; 45$] proved that f is always compact-covering if f is open, E complete metric, and F Hausdorff. In [4; Corollary 1.2] it is shown that the completeness of E can be weakened to:
${ }^{(*)}$ For some metric on E, each $f^{-1}(y)$ is complete.
Example 4.1 in [4] shows, moreover, that $\left(^{*}\right)$ cannot be replaced by the weaker requirement that each $f^{-1}(y)$ is completely metrizable. The space E of that example was, however, obtained by non-constructive methods, and was thus-presumably-not Borel. The purpose of this note is to construct an example in which E is actually σ-compact; since E cannot be complete, that is as far as one can hope to go in this direction.

Our example will be constructed with the aid of a theorem on special G_{δ} sections for continuous maps between compact metric spaces, which may have some independent interest. (That such maps always possess G_{δ} sections was proved by Bourbaki [2; 144, Example 9a].

In addition to the works cited above, compact-covering maps have been studied in [1], [5], and [6].
2. Sections. A section for a map $h: P \rightarrow Y$ is any subset $S \subset P$ which intersects every non-empty $h^{-1}(y)$ in exactly one point.

Throughout this section, X and Y will denote compact metric spaces, with Y uncountable, and π a continuous map from X onto Y.

Lemma 2.1. There exists a closed $B \subset X$ such that every section for $\pi \mid B$ intersects every closed $A \subset X$ for which $\pi(A)=Y$.

Proof. Since Y is uncountable, it has a subset K homeomorphic to the Cantor set. Let $\mathfrak{F}(X)$ denote the space of all non-empty, closed subsets of X, topologized with the Hausdorff metric, and let

$$
\mathfrak{J}=\{A \varepsilon \mathfrak{F}(X): \pi(A)=Y\}
$$

Then \mathfrak{J} is closed in $\mathfrak{F}(X)$; since X is compact metric, so is $\mathfrak{F}(X)[3 ; \S 38, \mathrm{I}, 1]$, and hence so is \mathfrak{J}. Also $X \in \mathfrak{J}$, so \mathfrak{J} is non-empty. Hence there exists a continuous g from K onto \mathfrak{J}. Let

Received August 21, 1967. Partly supported by an N.S.F. Grant.

