COMMUTATORS AND THE STRONG RADICAL

BY ARLEN BROWN, CARL PEARCY* AND DAVID TOPPING

1. Introduction. Throughout this note \mathfrak{H} will denote a fixed separable, infinite-dimensional, Hilbert space. A von Neumann algebra acting on \mathfrak{H} is a weakly closed, self-adjoint algebra of operators that contains the identity operator I on \mathfrak{H} . Henceforth, it will always be assumed, without further notice, that the von Neumann algebras under consideration act on \mathfrak{H} . An operator Ain a von Neumann algebra \mathfrak{A} is a commutator in \mathfrak{A} if there exist operators Band C in \mathfrak{A} such that A = BC - CB. The problem of specifying which operators in \mathfrak{A} are commutators in \mathfrak{A} has been solved in certain special cases. If \mathfrak{A} is an algebra of type I_n , then the commutators in \mathfrak{A} are exactly the operators with central trace zero [4]. If \mathfrak{A} is a factor of type I_{∞} , then the non-commutators in \mathfrak{A} are exactly the operators [2]. Finally, if \mathfrak{A} is a factor of type III, then the non-commutators in \mathfrak{A} are exactly the non-zero scalar modulo

These results form the beginnings of a structure theory for commutators in a general von Neumann algebra. In this note, we continue to develop this structure theory by studying commutators in an arbitrary properly infinite von Neumann algebra α . Our main theorem is that every operator in the strong radical of α is a commutator in α . On the way to proving this theorem, we obtain some new characterizations of the strong radical.

2. Preliminaries. A von Neumann algebra is properly infinite if it contains no non-zero finite central projection. Any properly infinite von Neumann algebra α splits naturally into three disjoint subsets as follows. Let α denote the strong radical of α , i.e., let α be the intersection of all (proper, two-sided) maximal ideals in α . Let (S) denote the class of all operators A in α such that for some maximal ideal \mathfrak{M} of α , A is congruent to a non-zero scalar modulo \mathfrak{M} . Finally, let (F) denote the class of all operators A in α such that $A \notin \alpha \cup (S)$. It is clear that α is the disjoint union $\alpha = \alpha \cup (S) \cup (F)$; in view of our previous experience with commutators, we make the following conjecture.

Conjecture. The commutators in a properly infinite von Newmann algebra α are exactly the operators in the set $\mathfrak{R} \cup (F)$.

The proof of one part of this conjecture is quite easy.

PROPOSITION 2.1. No operator A in the set (S) is a commutator in α .

Received June 29, 1967. Research supported in part by grants from the National Science Foundation.

* Alfred P. Sloan Research Fellow.