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1. Introduction. Given topological semigroups T1, T2, T, with identity
elements ul u2, u., respectively, the cartesian product semigroup T1 X
T2 X X T. (with coordinate-wise multiplication) may be realized as the
pointwise product of the subsemigroups {u} < X T X X {u.}, (i
1, 2, n), each having identity element (u, u2, u). In this paper a
partial converse of this statement is considered: given a topological semigroup
S with identity element 1 and subsemigroups T1, ..., T. each having identity
element 1, under what conditions is the pointwise product T1 T isomorphic
(or at least locally isomorphic in a neighborhood of 1) to the cartesian product
semigroup T X X T? It is immediately apparent that some condition
of "independence" must be imposed on the collection {T T} of sub-
semigroups. In this paper attention is restricted to the local situation and the
concept of a locally algebraically independent collection of subsemigroups is
introduced. For particular classes of compact topological semigroups, this condi-
tion imposed on the collection T, T. in the situation described above is
sufficient to guarantee the existence of a homomorphism from T1 X )< T.
onto T1 T. which is one-to-one in some neighborhood of the identity element
in T1 X X T.. Thus the pointwise product is locally isomorphic to the
cartesian product. The main theorems in this connection are Theorems 3.1
and 3.3.
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2. Preliminaries. By the term "semigroup" we will mean topological semi-
group. By a homomorphism of a semigroup S into a semigroup T we will mean a
continuous function ] from S into T which is an algebraic homomorphism. If f
is one-to-one and has a continuous inverse, ] will be called an isomorphism.
The -relation in a semigroup S with an identity element is defined by

{(x, y) S >( S IxS yS and Sx Sy}.

If S is compact and commutative, then is a closed congruence and the quotient
semigroup SlOe is a compact topological semigroup. The -class containing an
element x will be denoted by H(x). The -class of an idempotent is a group and,
if S is compact, a compact topological group. If S has an identity element 1,
then H(1) acts as a transformation group on S by (h, x) hx. We will say that
the action of H(1) on S is locally effective if there exists a neighborhood V of H(1)
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