A NOTE ON THE ROGERS-RAMANUJAN IDENTITIES

By L. Carlitz

The identities in question are ([3, Ch. 6], [4, Ch. 19])

$$
\begin{equation*}
\sum_{0}^{\infty} \frac{x^{n^{2}}}{(x)_{n}}=\prod_{0}^{\infty}\left(1-x^{5 n+1}\right)^{-1}\left(1-x^{5 n+4}\right)^{-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{\infty} \frac{x^{n(n+1)}}{(x)_{n}}=\prod_{0}^{\infty}\left(1-x^{5 n+2}\right)^{-1}\left(1-x^{5 n+3}\right)^{-1}, \tag{2}
\end{equation*}
$$

where

$$
(x)_{n}=(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{n}\right), \quad(x)_{0}=1
$$

In view of the Jacobi theta formula

$$
\begin{equation*}
\sum_{-\infty}^{\infty} x^{n^{2}} z=\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1+x^{2 n-1} z\right)\left(1+x^{2 n-1} z^{-1}\right) \tag{3}
\end{equation*}
$$

it is easily verified that (1) and (2) are equivalent to

$$
\begin{equation*}
\sum_{0}^{\infty} \frac{x^{n^{2}}}{(x)_{n}}=\sum_{-\infty}^{\infty}(-1)^{n} x^{\frac{1}{n}(5 n+1)} \prod_{1}^{\infty}\left(1-x^{m}\right)^{-1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{\infty} \frac{x^{n(n+1)}}{(x)_{n}}=\sum_{-\infty}^{\infty}(-1)^{n} x^{\frac{3}{3 n(5 n+3)}} \prod_{1}^{\infty}\left(1-x^{m}\right)^{-1} \tag{5}
\end{equation*}
$$

respectively.
The object of the present note is to give a simplified proof of (4) and (5) which depends only on the identity (3). Essentially this is the proof given by the writer in [1]; however since the discussion in that paper is obscured by the occurrence of other material, it has seemed worthwhile giving a brief but connected account of the proof.

We define the function $I_{n}(z)=I_{n}(z, x)$ by means of

$$
\begin{equation*}
\prod_{0}^{\infty}\left(1+x^{r} y z\right)\left(1+x^{r} y^{-1} z\right)=\sum_{-\infty}^{\infty} y^{n} I_{n}(z) \tag{6}
\end{equation*}
$$

The function $I_{n}(z)$ is a basic analog of the Bessel function first defined by F. H. Jackson [5], [6] and discussed in a recent paper by Hahn [2]. However no properties of $I_{n}(z)$ will be assumed in the present paper.

It is evident from (6) that

$$
\begin{equation*}
I_{-n}(z)=I_{n}(z) . \tag{7}
\end{equation*}
$$

Received June 28, 1967. Supported in part by NSF grant GP-5174.

