A NOTE ON THE ROGERS—RAMANUJAN IDENTITIES

By L. CArnITZ

The identities in question are ([3, Ch. 6], [4, Ch. 19])
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In view of the Jacobi theta formula
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it is easily verified that (1) and (2) are equivalent to
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respectively.

The object of the present note is to give a simplified proof of (4) and (5)
which depends only on the identity (3). KEssentially this is the proof given
by the writer in [1]; however since the discussion in that paper is obscured by
the occurrence of other material, it has seemed worthwhile giving a brief but
connected account of the proof.

We define the function I,,(2) = I,.(2, ) by means of

©® 10 +290 + 2379 = 3 Lo,

The function I,.(z) is a basic analog of the Bessel function first defined by
F. H. Jackson [5], [6] and discussed in a recent paper by Hahn [2]. However
no properties of I,(z) will be assumed in the present paper.

It is evident from (6) that

™ I_.(2) = L(2).
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