COUNTING POLYNOMIAL FUNCTIONS (mod p^n)

BY GORDON KELLER* AND F. R. OLSON

If Z is the ring of integers and Z_n is the ring of integers mod p^n , then to every polynomial F in Z[x] there corresponds in a natural way (evaluation in Z_n) a function from Z_n into Z_n which we shall call F_n .

The total number of functions from Z_n into Z_n which can be realized as as polynomial functions has been computed [3]. We shall give a considerably shorter demonstration of this count.

We shall then use the same techniques to give a count of all permutations on Z_n which can be realized as polynomial functions. This count is the main result of the paper. (In the literature polynomials which yield permutations on Z_n are said to be uniformly distributed (mod p^n) [4].)

It is easily seen that for a fixed n the set of all F_n such that F is in $\mathbb{Z}[x]$ form a finite ring under point-wise addition and multiplication. We designate this ring by R_n and denote its order by r_n . If two polynomials are being considered as functions in R_n then f = g is used to designate the fact that the functions on \mathbb{Z}_n given by f and g are the same. Whether or not a specific polynomial such as x is being considered as an element of $\mathbb{Z}[x]$ or an element of R_n will not be mentioned unless the context is ambiguous.

Let $x^{(i)} = x(x-1)(x-2) \cdots (x-j+1)$ for *j* any integer greater than 0 and let $x^{(0)} = 1$. Obviously $x^{(i)}$ is in Z[x] for every $j \ge 0$. Since x^m appears with coefficient 0 in $x^{(i)}$ for j < m and with coefficient 1 in $x^{(m)}$ it is clear that x^m is an integer combination of the $x^{(i)}$ for $j \le m$. Thus we see easily that the $x^{(i)}$ for $j \ge 0$ form a Z-basis for Z[x]. (Actually it is well known that $x^m = \sum_{i=1}^m s^m_i x^{(i)}$ for m > 0, where the s^m_i are Stirling numbers of the second kind.)

We shall now give the reason for using the polynomials $x^{(i)}$. Since the product of any t consecutive integers is divisible by t!, the value of $x^{(i)}$ at any integer is divisible by the highest power of p dividing t!. Let $\alpha(t)$ be the largest integer s such that $p^* \mid t!$. If $\alpha(j) \geq n$, $x^{(i)}$ vanishes (mod p^n). Therefore, if $f \in R_n$, there exists a polynomial $F = \sum_{\alpha(i) < n} b_i x^{(i)}$ such that $f = F_n$. In fact, since our only concern is evaluation on Z_n , we may take $b_i \geq 0$. Let $b_i = \sum a_{ii}p^i$ with $0 \leq a_{ii} \leq p - 1$. If $i + \alpha(j) \geq n$, $p^i x^{(i)}$ vanishes (mod p^n). Therefore F can be chosen in the form $\sum_{i+\alpha(i) < n} a_{ii}p^i x^{(i)}$ with $F_n = F$.

THEOREM 1. If $f \in R_n$, there exists one and only one polynomial F in Z[x] with $f = F_n$, with $F = \sum_{i+\alpha(i) < n} a_{ii} p^i x^{(i)}$ such that $0 \le i$, j and the a_{ij} integers with $0 \le a_{ij} \le p - 1$.

Proof. Let $f \in R_n$. We have just seen that a polynomial F of the form Received June 28, 1967.

*The first author was supported in part by NSF GP-5434.