COUNTING POLYNOMIAL FUNCTIONS $\left(\bmod p^{n}\right)$

By Gordon Keller* and F. R. Olson

If Z is the ring of integers and Z_{n} is the ring of integers $\bmod p^{n}$, then to every polynomial F in $Z[x]$ there corresponds in a natural way (evaluation in Z_{n}) a function from Z_{n} into Z_{n} which we shall call F_{n}.

The total number of functions from Z_{n} into Z_{n} which can be realized as as polynomial functions has been computed [3]. We shall give a considerably shorter demonstration of this count.

We shall then use the same techniques to give a count of all permutations on Z_{n} which can be realized as polynomial functions. This count is the main result of the paper. (In the literature polynomials which yield permutations on Z_{n} are said to be uniformly distributed $\left(\bmod p^{n}\right)$ [4].)

It is easily seen that for a fixed n the set of all F_{n} such that F is in $Z[x]$ form a finite ring under point-wise addition and multiplication. We designate this ring by R_{n} and denote its order by r_{n}. If two polynomials are being considered as functions in R_{n} then $f=g$ is used to designate the fact that the functions on Z_{n} given by f and g are the same. Whether or not a specific polynomial such as x is being considered as an element of $Z[x]$ or an element of R_{n} will not be mentioned unless the context is ambiguous.

Let $x^{[j]}=x(x-1)(x-2) \cdots(x-j+1)$ for j any integer greater than 0 and let $x^{[0]}=1$. Obviously $x^{[i]}$ is in $Z[x]$ for every $j \geq 0$. Since x^{m} appears with coefficient 0 in $x^{[i]}$ for $j<m$ and with coefficient 1 in $x^{[m]}$ it is clear that x^{m} is an integer combination of the $x^{[i]}$ for $j \leq m$. Thus we see easily that the $x^{[i]}$ for $j \geq 0$ form a Z-basis for $Z[x]$. (Actually it is well known that $x^{m}=\sum_{i=1}^{m} s_{i}^{m} x^{[i]}$ for $m>0$, where the s_{i}^{m} are Stirling numbers of the second kind.)

We shall now give the reason for using the polynomials $x^{[i]}$. Since the product of any t consecutive integers is divisible by $t!$, the value of $x^{[t]}$ at any integer is divisible by the highest power of p dividing t !. Let $\alpha(t)$ be the largest integer s such that $p^{s} \mid t!$. If $\alpha(j) \geq n, x^{[i]}$ vanishes $\left(\bmod p^{n}\right)$. Therefore, if $f \varepsilon R_{n}$, there exists a polynomial $F=\sum_{\alpha(j)<n} b_{i} x^{[i]}$ such that $f=F_{n}$. In fact, since our only concern is evaluation on Z_{n}, we may take $b_{i} \geq 0$. Let $b_{i}=\sum a_{i i} p^{i}$ with $0 \leq a_{i j} \leq p-1$. If $i+\alpha(j) \geq n, p^{i} x^{[i]}$ vanishes (mod p^{n}). Therefore F can be chosen in the form $\sum_{i+\alpha(i)<n} \bar{a}_{i j} p^{i} x^{[i]}$ with $F_{n}=F$.

Theorem 1. If $f \in R_{n}$, there exists one and only one polynomial F in $Z[x]$ with $f=F_{n}$, with $F=\sum_{i+\alpha(i)<n} a_{i i} p^{i} x^{[i]}$ such that $0 \leq i, j$ and the $a_{i j}$ integers with $0 \leq a_{i j} \leq p-1$.

Proof. Let $f \varepsilon R_{n}$. We have just seen that a polynomial F of the form
Received June 28, 1967.
*The first author was supported in part by NSF GP-5434.

