SOME GENERATING FUNCTIONS FOR LAGUERRE POLYNOMIALS

By L. Carlitz

Put

$$
\begin{equation*}
L_{n}^{(a)}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{(a+1)_{n} x^{k}}{(a+1)_{k} k!(n-k)!} . \tag{1}
\end{equation*}
$$

Employing a formula due to Chatterjea [2], J. W. Brown [1] has proved that $L_{n}^{(a+m n)}(x)$ satisfies a generating relation of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(a+m n)}(x) t^{n}=A(t) \exp (x B(t)) \tag{2}
\end{equation*}
$$

where m is an arbitrary integer. Moreover given (2) for m negative, it is shown that

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(-a-(m+1) n)}(x) t^{n}=\frac{A(-t)}{1-B(-t)} \exp \left\{\frac{-x B(-t)}{1-B(-t)}\right\} \tag{3}
\end{equation*}
$$

It may be of interest to point out that a result of the type (2) holds when m is an arbitrary complex number; similarly for (3).

Consider the sum

$$
\begin{aligned}
\sum_{n=0}^{\infty} L_{n}^{(a+b n)}(0) t^{n} & =\sum_{n=0}^{\infty} \frac{(a+b n+1)_{n}}{n!} t^{n} \\
& =\sum_{n=0}^{\infty}\binom{a+(b+1) n}{n} t^{n} .
\end{aligned}
$$

By the Lagrange expansion formula [3, vol. I, p. 126, ex. 212] we have

$$
\begin{equation*}
(1+v)^{a+1}=1+(a+1) \sum_{n=1}^{\infty}\binom{a+(b+1) n}{n-1} \frac{t^{n}}{n} \tag{4}
\end{equation*}
$$

where
(5)

$$
v=t(1+v)^{b+1}, \quad v(0)=0
$$

Differentiating (5) we get

$$
\begin{equation*}
\frac{d v}{d t}=\frac{(1+v)^{b+2}}{1-b v} ; \tag{6}
\end{equation*}
$$

now differentiating (4) and making use of (6) we find that

$$
\begin{equation*}
\frac{(1+v)^{a+1}}{1-b v}=\sum_{n=0}^{\infty}\binom{a+(b+1) n}{n} t^{n} . \tag{7}
\end{equation*}
$$

Received February 9, 1968. Supported in part by NSF grant GP-7855.

