## ON ZERO TYPE SETS OF LAGUERRE POLYNOMIALS

By J. W. Brown

1. Statement of problem. Along with the set $\left\{L_{n}^{(a)}(x)\right\}$ of generalized Laguerre polynomials, consider the modification $\left\{L_{n}^{(a+m n)}(x)\right\}$ where $m$ is an integer. It is known that this modification is of type zero for certain values of $m$. Recall [3] that zero type polynomial sets $\left\{\pi_{n}(x)\right\}$ may be characterized as those having generating relations of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \pi_{n}(x) t^{n}=\alpha(t) \exp [x \beta(t)] \tag{1}
\end{equation*}
$$

where it is understood that $\alpha(t)$ and $t^{-1} \beta(t)$ have at least formal power series expansions with non-zero initial coefficients. The well-known [2] generating relations

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(a)}(x) t^{n}=(1-t)^{-1-a} \exp \left[\frac{-x t}{1-t}\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(a-n)}(x) t^{n}=(1+t)^{a} \exp [-x t] \tag{3}
\end{equation*}
$$

as well as the less familiar [4]

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(a+n)}(x) t^{n}=\frac{\left[1+(1-4 t)^{1 / 2}\right]^{-a}}{2^{-a}(1-4 t)^{1 / 2}} \exp \left[-x \frac{1-(1-4 t)^{1 / 2}}{1+(1-4 t)^{1 / 2}}\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(a-2 n)}(x) t^{n}=\frac{\left[1+(1+4 t)^{1 / 2}\right]^{1+a}}{2^{1+a}(1+4 t)^{1 / 2}} \exp \left[\frac{-2 x t}{1+(1+4 t)^{1 / 2}}\right] \tag{5}
\end{equation*}
$$

are evidently of the form (1). So $\left\{L_{n}^{(a+m n)}(x)\right\}$ is of type zero for $-2 \leq m \leq 1$. The purpose of this paper is to show that the restriction on the range of $m$ may be dropped:

Theorem. $\quad\left\{L_{n}^{(a+m n)}(x)\right\}$ is of type zero for any integer $m$.
2. Proof of theorem. Starting with [2]

$$
L_{n}^{(a)}(x)=\frac{(1+a)_{n}}{n!}{ }_{1} F_{1}(-n ; 1+a ; x)
$$

Received June 26, 1967; in revised form July 28, 1967. The author is indebted to the late Professor E. D. Rainville and the University of Michigan for encouraging and supporting this research.

