THE GENERALIZED HYPERGEOMETRIC DIFFERENTIAL EQUATION

By L. Carlitz

1. Introduction. Put

$$
w=z^{\alpha}(\mu+z)_{p} F_{a-1}\left(\left.\begin{array}{c|c}
a_{p} \tag{1.1}\\
1+b_{a-1}
\end{array} \right\rvert\, \lambda(\nu+z)^{\gamma}\right),
$$

where

$$
\begin{gathered}
{ }_{p} F_{a-1}\left(\left.\begin{array}{c}
a_{p} \\
1+b_{a-1}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{p}\right)_{k}}{\left(1+b_{a-1}\right)_{k}} \frac{z^{k}}{k!} \\
\left(a_{p}\right)_{k}=\prod_{r=1}^{p}\left(a_{r}\right)_{k}, \quad\left(1+b_{a-1}\right)_{k}=\prod_{s=1}^{q-1}\left(1+b_{s}\right)_{k}
\end{gathered}
$$

and

$$
(a)_{k}=a(a+1) \cdots(a+k-1), \quad(a)_{0}=1
$$

The parameters $\alpha, \beta, \mu, \nu, \lambda, \gamma$ are arbitrary but $\lambda \gamma \neq 0$. Lavoie and Mongeau [1] have shown that w satisfies the differential equation

$$
\begin{equation*}
\phi_{m} H_{m} \psi_{m}=0, \tag{1.2}
\end{equation*}
$$

where $m=\max (p, q), \phi_{m}$ is a row matrix:

$$
\begin{equation*}
\phi_{m}=\left(\sigma_{a-i}\left(b_{a-1}\right)-\lambda(\nu+z)^{\gamma} \sigma_{p-i}\left(a_{p}\right)\right) \quad(j=0,1, \cdots, m) \tag{1.3}
\end{equation*}
$$

$\sigma_{i}\left(a_{p}\right)$ denotes the j-th elementary symmetric function of a_{1}, \cdots, a_{p} and similarly for $\sigma_{i}\left(b_{a-1}\right) ; \psi_{m}$ is a column matrix with typical element

$$
z^{i} \frac{d^{i}}{d z^{i}} \quad(i=0,1, \cdots, m)
$$

H_{m} is a square matrix of order $m+1$ which is defined as the product of seven matrices each of which is described explicitly. Put

$$
\begin{equation*}
H_{m}=\left(h_{i, i}\right) \quad(i, j=0,1, \cdots, m) \tag{1.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
h_{i, i}=0 \quad(0 \leq i<j \leq m) \tag{1.5}
\end{equation*}
$$

so that H_{m} is a lower triangular matrix. The quantities $h_{i, j}$ are not determined explicitly. However it is shown that

$$
\begin{equation*}
h_{i, i}=\left(\gamma^{-1} N\right)^{i} \quad(i=0,1, \cdots, m) \tag{1.6}
\end{equation*}
$$

where $N=1+\nu z^{-1}$. Also $h_{i, j}$ is computed for $0 \leq j \leq i \leq 4$.
Received November 2, 1967. Supported in part by NSF grant GP-5174.

