THE GENERALIZED HYPERGEOMETRIC DIFFERENTIAL EQUATION

BY L. CARLITZ

.

.

1. Introduction. Put

(1.1)
$$w = z^{\alpha}(\mu + z) {}_{\nu}F_{q-1}\left(\frac{a_{\nu}}{1 + b_{q-1}} \middle| \lambda(\nu + z)^{\gamma}\right),$$

where

$${}_{p}F_{q-1}\left(\begin{array}{c}a_{p}\\1+b_{q-1}\end{array}\middle|z\right) = \sum_{k=0}^{\infty}\frac{(a_{p})_{k}}{(1+b_{q-1})_{k}}\frac{z^{k}}{k!},$$

$$(a_{p})_{k} = \prod_{r=1}^{p}(a_{r})_{k}, \quad (1+b_{q-1})_{k} = \prod_{s=1}^{q-1}(1+b_{s})_{k}$$

and

$$(a)_k = a(a + 1) \cdots (a + k - 1), \quad (a)_0 = 1.$$

The parameters α , β , μ , ν , λ , γ are arbitrary but $\lambda \gamma \neq 0$. Lavoie and Mongeau [1] have shown that w satisfies the differential equation

$$\phi_m H_m \psi_m = 0,$$

where $m = \max(p, q), \phi_m$ is a row matrix:

(1.3)
$$\phi_m = (\sigma_{q-i}(b_{q-1}) - \lambda(\nu + z)^{\gamma} \sigma_{p-i}(a_p))$$
 $(j = 0, 1, \cdots, m),$

 $\sigma_i(a_p)$ denotes the *j*-th elementary symmetric function of a_1, \dots, a_p and similarly for $\sigma_i(b_{q-1})$; ψ_m is a column matrix with typical element

$$z^i\frac{d^i}{dz^i} \qquad (i = 0, 1, \cdots, m);$$

 H_m is a square matrix of order m + 1 which is defined as the product of seven matrices each of which is described explicitly. Put

(1.4)
$$H_m = (h_{i,j})$$
 $(i, j = 0, 1, \cdots, m).$

Then

(1.5)
$$h_{i,j} = 0 \quad (0 \le i < j \le m),$$

so that H_m is a lower triangular matrix. The quantities $h_{i,i}$ are not determined explicitly. However it is shown that

(1.6)
$$h_{i,i} = (\gamma^{-1}N)^i$$
 $(i = 0, 1, \cdots, m),$

where $N = 1 + \nu z^{-1}$. Also $h_{i,j}$ is computed for $0 \le j \le i \le 4$.

Received November 2, 1967. Supported in part by NSF grant GP-5174.