A DISK IN n-SPACE WHICH LIES ON NO 2-SPHERE

By R. C. LACHER

In a talk in 1959, Bing described a disk (=2-cell) in \mathbb{R}^3 which is not a subset of any 2-sphere in \mathbb{R}^3 . Bing's and other examples are described by Martin in [3]. In [1], Bean produced an example of such a disk with only two wild points (and at the same time proved that a disk with only one wild point in \mathbb{R}^3 lies on a 2-sphere in \mathbb{R}^3). None of the constructions seem to generalize readily to higher dimensional euclidean spaces. In this note we introduce a new method of constructing such wild disks which generalizes easily. More precisely, we prove:

THEOREM. For each $n \geq 3$, there is a disk $D = D_n^2$ in \mathbb{R}^n such that

- (1) The set C of points of D at which D fails to be locally flat in \mathbb{R}^n is a compact, zero-dimensional subset of the interior of D; and
- (2) The boundary of D is homotopically essential in $\mathbb{R}^n \mathbb{C}$.

COROLLARY. For $n \geq 3$, D_n^2 is a disk in \mathbb{R}^n which is locally flat at each boundary point and which lies on no 2-sphere in \mathbb{R}^n .

The Cantor set C turns out to be the one constructed by Blankinship in [2]. In fact, to understand this proof, one must have some familiarity with Blankinship's paper. We recall the construction in [2] briefly.

$$C = \bigcap_{l=0}^{\infty} A_l ,$$

where $A_0 = T$ is a nice differentially embedded copy of $T^n = B^2 \times (S^1)^{n-2}$; A_1 is the union of a finite number of copies T_1, \dots, T_k of T^n , the T_i being pairwise disjoint and "linked" in the interior of T; and A_i , $l \ge 2$, is as defined in the following paragraph.

There are (linear) homeomorphisms $f_i: T \approx T_i$, $i = 1, \dots, k$. More generally, for each finite sequence $\alpha = (i_1, \dots, i_l)$ of integers with $1 \leq i_j \leq k$, define $\lambda(\alpha) = l$, and let

$$f_{\alpha} = f_{i_1}f_{i_2} \cdots f_{i_l}, T_{\alpha} = f_{\alpha}(T).$$

Then we can define A_i by

$$A_{l} = \bigcup_{\lambda(\alpha)=l} T_{\alpha} .$$

By describing the tori T_1, \dots, T_k carefully, Blankinship was able to prove the following facts:

Received June 6, 1967. Partially supported by NSF Grant GP-5860.