A GENERALIZED WEYL CRITERION

By J. L. Brown, Jr. and R. L. Duncan

Our object is to discuss the distribution of sequences of real numbers modulo one. Our results include Weyl's criterion on uniform distributions [3; 76] and several analogous results as special cases.

Let $\{x_i\}_1^{\infty}$ be an arbitrary sequence of real numbers and let β_i denote the fractional part of x_i .

For the sequence $\{\beta_i\}_1^{\infty}$ of fractional parts, we define the function F_n on [0, 1] so that $F_n(x)$ is the fractional number of terms from the set $\{\beta_1, \dots, \beta_n\}$ which lie in the interval [0, x), that is, the number of such terms divided by n. Then for each n > 0, F_n is a nondecreasing, left-continuous function on [0, 1] with F(0) = 0 and F(1) = 1.

Now, let ϕ_0 , ϕ_1 , ϕ_2 , \cdots be an arbitrary sequence of complex-valued functions in $L_2[0, 1]$ which are closed with respect to the complex space $L_2[0, 1]$; i.e., if $f \in L_2[0, 1]$ and

$$\int_0^1 f(x)\phi_n(x) \ dx = 0 \quad \text{for all} \quad n \ge 0,$$

then f(x) = 0 almost everywhere on [0, 1].

Next, we let g be a given real-valued function which is non-decreasing and continuous on [0, 1] with g(0) = 0 and g(1) = 1. Further, let

$$a_k = \int_0^1 g(x)\phi_k(x) dx$$
 for $k \ge 0$

be the number obtained by taking the complex conjugate of the usual inner product of g and ϕ_k .

In terms of these various quantities, our theorem has the following form:

THEOREM. We have $\lim_{n\to\infty} F_n(x) = g(x)$ for all $x \in [0, 1]$ if and only if

(1)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\psi_{\nu}(\beta_i)=0$$

for each $\nu \geq 0$, where the ψ , are defined for $x \in [0, 1]$ by

(2)
$$\psi_{\nu}(x) = \begin{cases} 1 + \frac{1}{a_{\nu}} \int_{1}^{x} \phi_{\nu}(t) dt & \text{if} \quad a_{\nu} \neq 0 \\ \int_{1}^{x} \phi_{\nu}(t) dt & \text{if} \quad a_{\nu} = 0. \end{cases}$$

Received May 25, 1967.