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Our object is to discuss the distribution of sequences of real numbers modulo
one. Our results include Weyl’s criterion on uniform distributions [3; 76] and
several analogous results as special cases.

Let x }] be an arbitrary sequence of real numbers and let i denote the
fractional part of xi.
For the sequence {/.} of fractional parts, we define the function

[0, 1] so that Fn(x) is the fractional number of terms from the set
which lie in the interval [0, x), that is, the number of such terms divided by n.
Then for each n > 0, F is a nondecreasing, left-continuous function on [0, 1]
with F(0) 0 and F(1) 1.
Now, let o, 1, ., be an arbitrary sequence of complex-valued functions

in L2[0, 1] which are closed with respect to the complex space L2[0, 1]; i.e., if
] L[0, 1] and

fo1/(x),,(x) dx 0 for all n >_ 0,

then ](x) 0 almost everywhere on [0, 1].
Next, we let g be a given real-valued function which is non-decreasing and

continuous on [0, 1] with g(0) 0 and g(1) 1. Further, let

as g(x)(x) dx for l 7__ 0

be the number obtained by taking the complex conjugate of the usual inner
product of g and 4

In terms of these various quantities, our theorem has the following form:

THEOREM. We have lim F,,(x) g(x) ]or all x . [0, 1] i] and only

(1) lim 1 v(;) 0
n

/or each , >_. O, where the b, are defined ]or x . [0, 1] by

1 ,(t) dt if a 0
(2) v(x)

J] .(t) dt if a. 0.
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