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I. Introduction and history. Besicovitch [1] showed that the space of Bohr
almost periodic functions could be completed by closing it with respect to the
norm

I/If.. lim [/(x) ’dx p >_ i.

In the resulting function spaces {B AP} one identifies functions whose
"distance" from one another is zero. The members of {B AP} have Fourier
series and the spaces {B AP} closely resemble the more familiar L-spaces.
In fact, Flner [6] has shown that the normed linear spaces ({B
and (L(/), !1 I1) are naturally isomorphic and isometric, where/ is the Bohr
compactification of the real line.

Let G be a locally compact To-topological group (= LC group) and a(G)
the space of continuous complex-valued yon Neumann almost periodic functions
on G. It is natural to ask whether or not a(G) can be completed in a fashion which
generalizes, or is at least analogous to, the Besicovitch procedure. Other
authors have considered this question. In 1)57, Fclner [7] showed that if G
is discrete, one may define a norm II I1, on the set of all complex-valued func-
tions on G such that the closure of (G) with respect to II I[, is complete,
p > 1. The resulting space of functions is naturally isomorphic and isometric
to the space L(), where ( is the Bohr compactification of G. Unfortunately,
however, the original Besicovitch spaces cannot be realized via the Flner pro-
’cedure. Also the Flner norm II I! is defined through a quite complicated
iimiting process.

In 1958 Hirschfeld [10] considered LC groups G which have "left sampler
families" {U, },,R (cf., [13]). Roughly, these are families of open bounded (i.e.,
each , is compact) subsets of G satisfying enough conditions to insure that
for all / a(G)

M/ lim5 f dt.

Here M] denotes the mean value of ] and/ is left Haar measure. One then
closes a(G) with respect to the norm
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