NOTE ON G. WHAPLES' PAPER "ALGEBRAIC EXTENSIONS OF ARBITRARY FIELDS"

BY G. H. WENZEL

This note engages in a question dealt with in [1, Chapter IX], [2; 93–95] and [3]. The denotations are as in [3], and all fields have characteristic $\neq 2$. In the proof of Case 3, Theorem 2, Whaples uses the wrong assumption that $k(\zeta_{n+r})$ has an automorphism τ for which $\zeta_{n+r}^{\tau} = \zeta_{n+r}^{-1}$; this argument is repeated towards the end of Case 5, but is correct there as the corollary to Lemma 1 shows. This is not so in Case 3, for the existence of the fixed fields C_r depends on the existence of the subgroup $\{\tau, \tau^2 = id\}$ of the Galois-group $G(k(\zeta_{n+r})/k)$ which, in general, does not exist; for one easily verifies the following lemma.

LEMMA 1. If the proper extension $k(\zeta_2)$ of k contains ζ_m and $N_{k(\zeta_2)/k}(\zeta_m) = -1$, then the automorphism τ mapping ζ_2 to $-\zeta_2$ cannot be extended to $k(\zeta_{m+1})$ such that $\tau^2 = id$.

COROLLARY. If $\zeta_2 \notin k$ and $k(\zeta_2)$ contains all ζ_r , then $N_{k(\zeta_2)/k}(\zeta_r) = 1$ for all ν .

This situation actually occurs as the simple example $k = Q((-2)^{\frac{1}{2}})$ shows: (i) k does not contain $\zeta_2 = i$, (ii) k(i) contains ζ_2 and $\zeta_3 = (-2)^{-\frac{1}{2}} - (-2)^{-\frac{1}{2}}i$, but not ζ_4 , (iii) $N_{k(i)/k}(\zeta_3) = -1$. Fortunately, Lemma 1 implies the following lemma which permits a correct proof of Case 3.

LEMMA 2. If k is a field without ζ_2 and $k(\zeta_2)$ contains ζ_n but not ζ_{n+1} , then $G(k(\zeta_{n+\nu})/k)$ is cyclic of degree $2^{\nu+1}$ if and only if $N_{k(\zeta_n)/k}(\zeta_n) = -1$.

We need only to prove one direction and assume that $N_{k(\zeta_n)/k}(\zeta_n) = -1$. If $G = G(k(\zeta_{n+\nu})/k)$, $\nu \geq 1$, were not cyclic, then $G = G(k(\zeta_{n+\nu})/k(\zeta_2)) \bigoplus H$ with $H \cong Z/2Z$. Hence, G would contain an element τ of order 2 which is not in $G(k(\zeta_{n+\nu})/k(\zeta_2))$, contradicting Lemma 1. Thus, we split the proof of Case 3 for p = 2 into two parts: If $N_{k(\zeta_n)/k}(\zeta_n) = 1$, then Whaples' proof applies; if $N_{k(\zeta_n)/k}(\zeta_n) = -1$, then the above lemma settles the matter.

References

- 1. A. A. ALBERT, Modern Higher Algebra, Chicago, 1937.
- 2. E. ARTIN AND J. TATE, Class Field Theory, Harvard, 1961.
- 3. G. WHAPLES, Algebraic extensions of arbitrary fields, this Journal, vol. 24(1957), pp. 201-204.

PENNSYLVANIA STATE UNIVERSITY

Received December 22, 1966.