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BY G. H. WENZEL

This note engages in a question dealt with in [1, Chapter IX], [2; 93-95]
and [3]. The denotations are as in [3], and all fields have characteristic 2.
In the proof of Case 3, Theorem 2, Whaples uses the wrong assumption that
k(fn/) has an automorphism r for which i’,/ f:+ this argument is repeated
towards the end of Case 5, but is correct there as the corollary to Lemma 1
shows. This is not so in Case 3, for the existence of the fixed fields C depends
on the existence of the subgroup {r, r id} of the Galois-group G(k(n+,)/k)
which, in general, does not exist; for one easily verifies the following lemma.

LEMMA 1. I] the proper extension () o] k contains L,, and N(.)k(,) 1,
then the automorphism r mapping to - cannot be extended to k(,+l) such
that r id.

COROLLARY. I] k and k(f.) contains all , then Nk.)z() 1 ]or all ,.
This situation actually occurs as the simple example k Q((-2)) shows:

(i) k does not contain f. i, (ii)/(i) contains and 8 (-2)- (-2)-i,
but not ’4, (iii) N,(8) -1. Fortunately, Lemma 1 implies the following
lemma which permits a correct proof of Case 3.

LEMMA 2. I] k is a field without and k() contains ,, but not ,+ then
G(k(’.+)/k) is cyclic o] degree 2+/1 and only i] Nc.k(’.) --1.

We need only to prove one direction and assume that N(.)(’,) -1.
If G G(k(.+.)/k), >_ 1, were not cyclic, then G G(k(.+.)/k(.)) ( H
with H Z/2Z. Hence, G would contain an element r of order 2 which is not
in G(k(.+,)/k(f2)), contradicting Lemma 1. Thus, we split the proof of Case 3
for p 2 into two parts: If N(.)(i’.) 1, then Whaples’ proof applies; if
Nkc.)/(f.) --1, then the above lemma settles the matter.
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