A LOWER BOUND IN ASYMPTOTIC DIOPHANTINE APPROXIMATIONS

By William W. Adams

1. Introduction. Let α be a real irrational number. Define for all real numbers $B \geq 1, \lambda(B, \alpha)$ to be the number of solutions in integers p, q of the inequalities

$$
\begin{equation*}
|q \alpha-p|<\frac{1}{q} \quad \text { and } \quad 1 \leq q \leq B \tag{1}
\end{equation*}
$$

Then it is known [7] that for almost all α,

$$
\lambda(B, \alpha) \sim 2 \log B \quad(B \rightarrow \infty) .
$$

It is not hard to show that there is a universal constant c such that for all irrationals α

$$
\lambda(B, \alpha) \geq c \log B+O(1) \quad(B \rightarrow \infty)
$$

The purpose of this paper is to find the best possible value of c. This turns out to be

$$
c_{0}=3 / \log \left(\frac{9+\sqrt{77}}{2}\right)=1.373 \cdots
$$

We show that if α is equivalent to

$$
\alpha_{0}=[0,1,7,1,7,1,7, \cdots]=\frac{-7+\sqrt{77}}{2}
$$

then

$$
\lambda(B, \alpha)=c_{0} \log B+O(1) .
$$

$\left(\alpha_{0}=[0,1,7,1,7,1,7, \cdots]\right.$ denotes the continued fraction expansion of α_{0}. We say two irrationals are equivalent if the tail ends of their continued fractions are the same.) But also there are uncountably many irrationals α such that

$$
\lambda(B, \alpha) \sim c_{0} \log B
$$

In order to obtain these results we use the theory of continued fractions (see [3, 5]). The first job (in §2) is to show how to count in terms of continued fractions. This was done in [1] but here we need a more explicit answer. We also need to know $\lambda(B, \alpha)$ if α is a quadratic irrationality. Lang [4], [5] showed that if α is quadratic, then there is a constant $c=c(\alpha)$ such that

$$
\lambda(B, \alpha)=c \log B+O(1)
$$

Received December 2, 1966. This research was partially supported by National Science Foundation Grant GP-3990 and NSF Postdoctoral Fellowship.

