SELF-RECIPROCAL FUNCTIONS FOR THE HANKEL TRANSFORMATION OF INTEGER ORDER

By James Rovnyak and Virginia Rovnyak

If $f(x)$ belongs to $L^{2}(0, \infty)$, its Hankel transform of order $\nu>-1$ is defined by

$$
g(x)=\int_{0}^{\infty} f(t) J_{\nu}(x t)(x t)^{\frac{1}{2}} d t
$$

where

$$
J_{\nu}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{1}{2} x\right)^{2 n+\nu}}{n!\Gamma(n+\nu+1)}
$$

is the Bessel function of order ν. The integral converges in the mean square sense, and the linear transformation $f(x) \rightarrow g(x)$ so defined in $L^{2}(0, \infty)$ is both isometric and selfadjoint, and hence equal to its own inverse. A self-reciprocal function is a function which is equal to its own Hankel transform. A function is called skew-reciprocal if it is equal to minus its own Hankel transform. By an example of Sonine [6], it is possible for a self-reciprocal or skew-reciprocal function to vanish in an interval ($0, a$) without vanishing identically. In the case $\nu=0$, a study of this phenomenon has led to an interesting isometric expansion which exhibits all Hankel transform pairs in $L^{2}(0, \infty)$ vanishing in $(0, a)$. This expansion was first obtained by de Branges [2], and later by V. Rovnyak [5]. In this paper we extend the methods of [5] to give a similar partially isometric expansion when ν is a positive integer.
Throughout the paper we assume that ν is a positive integer, but Theorems I and II and the lemma to Theorem VI are true as stated for arbitrary $\nu>0$.

As in [5] we use a device due to Hardy and Titchmarsh [4]. We begin by stating this in a convenient form. Let D^{ν} be the Hilbert space of analytic functions $F(z)$ defined for $y>0$, such that

$$
\|F\|^{2}=\Gamma(\nu)^{-1} \int_{0}^{\infty} \int_{-\infty}^{\infty}|F(x+i y)|^{2} y^{\nu-1} d x d y<\infty
$$

Theorem I. If $f(x)$ belongs to $L^{2}(0, \infty)$, then

$$
\begin{equation*}
F(z)=\int_{0}^{\infty} t^{\nu+\frac{3}{i} e^{i z t^{2}} f(t) d t, \quad y>0, ~, ~} \tag{1}
\end{equation*}
$$

belongs to \mathscr{D}^{ν} and

$$
\begin{equation*}
\|F\|^{2}=2 \pi \int_{0}^{\infty}|f(t)|^{2} d t \tag{2}
\end{equation*}
$$

Received November 15, 1966. Research supported by the National Science Foundation.

