ARITHEMETIC FUNCTIONS IN AN UNUSUAL SETTING II

By L. CArrITZ

Let F denote an arbitrary but fixed field. An arithmetic function is a mapping
from the integers into F; usually the arguments are limited to positive or non-
negative integers. If f and g are two functions, the sum b = f + ¢ is defined by

(1) h(n) = f(n) + g(n).

The writer [1] has defined the Lucas product A = f*g by means of
() h(n) = 2_:,)* f@)gln — a),

where the summation is restricted to such a that

® vt ()

here p denotes a fixed prime.
We recall that (3) holds if and only if

n=mn, +np+mnp + --- 0 <n; <p),
a=a+ap+ap + -+ (0=Le <p),
and
4) 0<a; <n (=012 --).

The algebraic system based on (1) and (2) will be denoted by L, . The
object of this note is to point out the relationship of L, to certain systems based
on other definitions of product.

Consider functions that are now defined only on the positive integers. The
sum will again be defined by (1). The unitary product is defined by means of
®) hm) = 22 fla)g(b),

@1
where (a, b) denotes the greatest common divisor of a, b.

The unitary product was introduced by Vaidyanathaswamy [4] who used
the term compounding; the present terminology was introduced by Eckford
Cohen [2], [3]. The algebraic system based on (1) and (5) may be denoted by U, .

We shall be interested in the subalgebra V, consisting of functions f such that

(6) fm) =0 (n not squarefree);
We show that V, and L, are isomorphic.
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