RADIAL SYMMETRIZATION AND CAPACITIES IN SPACE

By J. A. Pfaltzgraff

1. Introduction. Let E^{n} be finite Euclidean n-space, $n \geq 3$. A ring R is a domain in E^{n} whose complement consists of a bounded component C_{0} and an unbounded component C_{1}. Given a number $\alpha, 2 \leq \alpha \leq n$, we define the α capacity of a ring R as follows:

$$
C_{\alpha}(R)=\inf _{u} \int_{R}|\nabla u|^{\alpha} d \omega,
$$

where the infimum is taken over all functions $u(x)$, which are continuously differentiable in R and have boundary values 0 on $b d r y C_{0}$ and 1 on bdry C_{1}. The n-capacity of a ring in E^{n} is the conformal capacity. Gehring [2] proved that the conformal capacity of a ring in 3 -space is not increased by either spherical or point symmetrization. Similar results for Steiner and Schwarz symmetrization have been obtained by Anderson [1].

In this paper we define a class of radial symmetrization methods for domains in E^{n} and show that the α-capacity of a ring is not increased by the appropriate radial symmetrization. These methods are natural extensions of symmetrization processes introduced by Szegö [8] and Marcus [5].

Suppose u is the extremal function for the conformal capacity of a ring R. We show (Theorem 2) that the sets where $u \leq a(0<a<1)$ are starlike sets if both C_{0} and $R \cup C_{0}$ are starlike. A similar result is established for the α capacity. Stoddart [7] proved this for harmonic functions in E^{3}.

Acknowledgment. The author wishes to express his gratitude to George Springer for many helpful suggestions and conversations.
2. Preliminaries. Given a set S in E^{n} we let $\mathbf{C} S$ and $m_{k}(S)$ denote the complement, and k-dimensional Lebesgue measure of S, respectively. Points in E^{n} will be designated by capital letters P, Q or by small letters x and y with rectangular coordinates $x=\left(x_{1}, \cdots, x_{n}\right)$. Points will be treated as vectors with norm and inner product denoted by $|x|$ and ($x \cdot y$), respectively.

It will be convenient to use the spherical coordinates $r, \varphi_{1}, \cdots, \varphi_{n-1}$ of a point $x=\left(x_{1}, \cdots, x_{n}\right)$ where $r=|x|, 0 \leq \varphi_{n-1}<2 \pi, 0 \leq \varphi_{k} \leq \pi(k=1, \cdots$, $n-2)$, and $x_{1}=r \cos \varphi_{1}, x_{k}=r \sin \varphi_{1} \cdots \sin \varphi_{k-1} \cos \varphi_{k}(k=2, \cdots, n-2)$, $x_{n-1}=r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1}, x_{n}=r \sin \varphi_{1} \cdots \sin \varphi_{n-1}$. Given numbers $\varphi_{k}^{\prime}(1 \leq k \leq n-1)$ we let $L\left(\varphi^{\prime}\right)$ denote the ray $L\left(\varphi^{\prime}\right)=\left\{x: 0 \leq|x|, \varphi_{k}=\right.$ $\left.\varphi_{k}^{\prime}, 1 \leq k \leq n-1\right\}$. The intersection $D \cap L(\varphi)$ of a set D with the ray $L(\varphi)$ will be denoted by $D(\varphi)$.

Received November 21, 1966. An abstract was presented to the American Mathematical Society on April 26, 1966 (66T-328).

